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1. INTRODUCTION

This is the final report on RADC Postdoctoral Contract No. CCT-SC-0102-442,

Task Order 1. The work statement covering the portion of the project beginning

May 8, 1979 and terminating on November 1, 1979 is presented below:

The objective of the project is to construct an analytical model of a

class of RF intrusion sensor systems which can be used to predict their

behavior under a wide range of conditions. There are a variety of RF intrusion

sensor systems now in use or under development, " through B-9 but this work

will be focussed on a specific confBgurat-on "3,B-4,B-5,B-7 In this system

a signal is generated at a point along a leaky coaxial cableC-l through C-14

laid out circularly on the periphery of an area to be protected.

A receiving antenna is mounted at or near the center of the area to respond

to signal energy "leaking" from the small apertures placed along the cable.

The entrance of an intruder perturbs the field in the vicinity of the cable

and this perturbation is sensed by the antenna.

The work will be divided into four sequential tasks, as follows:

Task 1: A review of the pertinent literature to determine what analytical

work has been done that is applicable to the problem. Particular attention

will be focused on papers dealing with the fields generated by leaky coaxial

callesC- through C-14 and the perturbation of fields by various kinds of ob-

jects, including humans and animals?
l through D-35

Task 2: Generation of an analytical model for the specified configuration,

using past results uncovered in Task 1 whenever they are applicable and gener-

ating new analysis if (as is already evident) the past work does not cover the

entire problem. The model envisioned involves the use of theory already formu-

- lated on the fields around a leaky coaxial cable in free space, generalization

l-1
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of that theory to include the effect of the ground on these fields, and

finally the perturbation of the fields due to foreign objects entering the

environment. Particular emphasis will be placed on the polarization character-F'istics of the unperturbed and perturbed fields, with a view toward the use of
polarization changes as a means of identifying and tracking intruders.

Task 3: Construction of a Fortran program based on the analytical results

obtained in Task 2. This program is expected to contain a large number of un-

specified variables. Among those should be the radio frequency, constitutive

parameters of the ground and those of foreign objects perturbing the fields,

size and shape parameters of these objects, polarization characteristics of

the fields and other variable parameters associated with the cable, receiving

antenna and the intruding object.
Task 4: A parametric study based on the computer program constructed in

Task 3 to determine the effects of various parameters on the expected behavior

of the system.

The contract was extended beyond November 1, 1979. However, there was a

hiatus between that date and March 1980, when the second portion of the

contract officially began. The extension covered the period from the above

date to November 1, 1980.

The work statement for the second portion of the contract is presented

J below:

The objective of tne project is to analyze a particular class of RF

intrusion systems. Results will be used to predict their behavior under a

wide range of conditions. There are a variety of RF intrusion systems now in

use or under development, but this work focuses on a specific configuration.

In this system a signal is generated at a point along a leaky coaxial cable

N1-2



laid out circularly on the periphery of an area to be protected.

A receiving antenna is mounted at or near the center of the area to

respond to signal energy "leaking" from the small apertures placed along the

cable. The entrance of an intruder perturbs the field in the vicinity of the

cable and this perturbation is sensed by the antenna.

Work on this problem was initiated in May 1979. A comprehensive review

of the pertinent literature was completed. An analytical model was constructed

which includes (a) mathematical expressions for the fields generated by the

cable slots in free space, (b) the effect of ground reflections on the fields

from the slots, (c) a generalized mathematical model for the scattered fields

not accounting for ground reflections of these fields, and (d) a computer pro-

gram for the slot-induced fields both with and without ground reflections.

The subject task constitutes an enlargement of the scope of the work to

include detailed results on the fields scattered from human frame targets.

The projected phases of this task are:

Phase 1: An analysis of the scattering from human frame targets, where

the target is modelled as a lossy dielectric of ellipsoidal

or spheroidal shape.

Phase 2: Incorporation of the scattering results of Phase 1 into the

generalized mathematical model. The scattered fields obtained

will include the effect of the fields from the slots impinging

directly on the target and the ground-reflected slot-induced

fields also incident on the target.

Phase 3: Analysis of the effect of ground-reflections on the fields

obtained in Phase 2.

Phase 4: Development of a computer program incorporating the results of

the analysis done in Phases 1, 2 and 3 and containing the
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previously developed program [see (d) above) as a subprogram.

Phase 5: Use of the computer program developed in Phase 4 to obtain a

set of numerical results showing the variation of the signalsI received at the antenna with key system parameters.

The report describes the very extensive mathematical analysis undertaken

to meet the above objectives. Numerical results are presented for a limited

range of parameter values. The limitations are those of time and cost. The

analytical model and the resulting computer programs are sufficiently general

to include the capability of treating a much wider range of geometries and

parameter variations. The outputs of the project should be considered as two-

fold. First, the particular geometries for which computer results are shown

are of direct importance in themselves. Secondly, the computer program should

be considered as an output of the work, since it could now be used to study a

wide range of cases that may be of practical interest.

The body of the report is divided into 11 sections. There are also five

appendices. Section 2 contains a mathematical description of the basic model

of the system. The generic configuration being analyzed consists of: (1) a

set of apertures, small compared with wavelength, on which electric and magnetic

fields can be specified. These apertures are placed somewhere in the vicinity

o,' a flat ground surface; (2) an electromagnetic scatterer modelled to resemble

an "intruder"; (3) an antenna, placed at an arbitrary point, which receives

signals resulting from the field distributions on the apertures. The received

* I signals are influenced by the presence of the ground and should also be in-

fluenced by the presence of the intruder. It is clear that the major objective

of the work is to determine the magnitude and polarization of the fields at the

receiving antenna both with and without the presence of the intruder and to

1-4



determine the effect of the intruder's presence on the magnitude and polariza-I tion of the fields.
In order to obtain numerical results, it is of course necessary to specify

more tightly the set of apertures, the scatterer used to revresent the intruder

and the location of the antenna. Hence, in the situation actually modelled on

the computer, the apertures are small slots along a coaxial cable laid along

the ground surface in a circular pattern. The antenna is somewhere near, but

not necessarily exactly at, the center of this circular configuration. The

scatterer is a spheroid somewhere near the cable. The spheroid must have uni-

form constitutive parameters but aside from that constraint is not restricted,

since it is in general a lossy dielectric. The frequency range of validity of

the analysis is roughly from 50MHz to 500MHz, implying a wavelength range

betw'een roughly 0.6 and 6 meters. The cable diameter is less than two centi-

meters and the length of each slot on the cable is less than one centimeter,

hence slot dimensions are always small compared with wavelength. This is a

feature that simplifies the analysis somewhat.

It was not possible within the time and cost constraints of the project

to model the cable fields, the scatterer and the effect of the ground in a

rigorous manner. "Engineering approximations" were necessary to render the

analysis feasible. Before delineating these approximations, we will first

describe the basic methodology.

The electric and magnetic fields were all expressed as superpositions

of plane waves. This "plane wave spectrum" type of analysis can be viewed as

a process of three-dimensional Fourier transformation from the space of a set

of three position coordinates (x, y, z) to the space of a set of three com-

ponents of a wave propagation vector kB= (k Bx, k By k0 B ). Sincek
0 * 0 X 0Y 0Z0

the propagation constant of free space, is a constant, we deal with the vector

* j 1-5



2 2+2
space (ax , ty Bz), subject to the constraint $x + y + z 1 . Because

of that constraint, only two of the components Bx, ay or Bz (say x , B ) cany z y
be specified independently and the other (say a) can be calculated therefrom.

Hence, the process degenerates to a two-dimensional Fourier transformation be-

tween two position coordinates (say x, y) and two components of B (say ax , By).x y
Section II of the report describes the general mathematical modelling of

the problem. The plane-wave spectrum of the field at the antenna consists of

four contributions, as follows:

(1) the direct wave from the slots in the cable (as if the ground and

intruder (scatterer) were not present]

(2) the ground-reflected wave from the slots in the absence of an in-

truder (scatterer)

(3) the field scattered by the intruder directly into the antenna

(4) the ground-reflected field at the antenna resulting from scattering

by the intruder.

The plane-wave spectrum type of modelling enables us to determine the

contributions (2) and (4) using standard theory of reflection of a plane-wave

from an infinite surface. Another very important reason for using that type

of modelling is the fact that the scattering program we are using (the best

available, in the writer's opinion, for the purpose at hand) assumes a plane-

wave input. Thus, by considering the fields at every stage of the process

as the fields of a plane-wave, we are enhancing the accuracy of the calcula-

tions (as compared with approximating fields of spherical waves or near-zone

waves or other more complicated field patterns as plane-waves).

However, the negative feature of this kind of modelling is that it

necessitates a process of inverse two-dimensional Fourier transformation at

the last stage of the calculation in order to convert the field spectra,
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functions of (x 13), into functions Of the horizontal position coordinates

(x, A). That process is computer-time intensive and, hence, the computations

require more computer time than would simpler but more approximate modelling

schemes we could have used.

Section 3 and Appendix I contain material on the method variously

called the "Kirchhoff-Huyghens" or "Stratton-Chu" integral method of deter-

mination of the fields at an arbitrary point in space due to fields on a

closed surface surrounding that point. This technique, widely used in antenna

theory, is our method of calculating the fields from the slots along the cable.

The method is presented in general in Appendix I. In Appendix II the general

concept of the plane-wave spectral representation of fields is presented.

Appendix III covers the spectral representation of the fields from an aperture

as calculated using the Kirchhoff-Huyghens integral method. Section 3 of the

main body of the report specializes the analysis in Appendix III to the case

of the rectangular slot. The use of a rectangular slot shape for mathematical

convenience is an approximation to the actual shape of slots on the cable of

central interest. However, since slot dimensions are small compared with

wavelength, the results are not significantly dependent on slot shape but only

on slot area regardless of shape.

Section 4 specializes the analysis in Section 3 to the specific case

of a slotted coaxial cable laid in a circular pattern, which is the actual

case treated in our numerical work. The wave modes propagating in the cable

are detailed in Appendix IV. The analysis in Section 4 is the basis of Sub-

*routine SOURCE, which is our computer program to evaluate the fields from the

cable as if the cable were in free space.

Section 5 treats the reflection of plane-wave fields from the ground

surface. This analysis is the basis for a section in the main program which
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is applied twice, first to the field from the cable, and secondly to the field

from the scatterer.

Section 6 treats the coordinate transformations required to enter the

scattering program. The latter is called "Subroutine BARBER", after Pro-

fessor Peter Barber of the Bioengineering Department at the University of

Utah, who developed the program and kindly gave us the program cards for use

in Northeastern's VAX computer. Barber's program, discussed in Section 7,

considers an incoming plane-wave specified by a magnitude and polarization in

a "lab frame" (Barber's terminology) coordinate system. The basic coordinate

system used in our problem, which we call the "ground frame", is the co-

ordinate system in which our "Subroutine SOURCE" delivers the field components

from the cable back into the main program. In the main program, the ground

reflection operation is performed, and the superposition of plane-wave spectra

of direct and ground-reflected source fields is then evaluated. The resultant

field components are expressed in the ground frame. The analysis discussed

in Section 6 describes the transformation of field components between Barber's

lab frame and our ground frame, so that the input to Barber's scatteri'ng pro-

gram can be expressed in his lab frame. The program to implement the analysis

in Section 6 is called "Subroutine BIS" ("B arber Input Subroutine").

As indicated above, the Barber scattering program is discussed in Section

7. In Section 8, we present the coordinate transformation required to

transform the output of the scattering program, i.e., the scattered field

components, from Barber's lab frame, in which these components are expressed

in his program, back to the ground frame. The program based on this analysis

is called "Subroutine BOS"1 ("B arber Output Subroutine").

In Section 9 we describe the analysis of the effect of ground reflection

on the scattered field. Computationally, the implementation of this analysis

1-8



is accomplished in the main program, which receives from Subroutine BARBER

via Subroutine BOS the scattered waves in two directions, one being that

directed from the center of the scatterer to the antenna position, the other

being that directed from the center of the scatterer to a "ground reflection

point", which, as dictated by the law of reflection, sends the ground-reflected

wave toward the antenna. The first of these scattered fields is logged in the

main program as that received by the antenna [Contribution (3)] and the second

is driven through the ground-reflection process in the main program and the

result becomes Contribution (4) at the antenna.

The justification for considering scattering in only these two directions

as opposed to all directions (which would have required prohibitively large

computer time and would have required still another double Fourier trans-

formation), is the fact that the scatterer is in the far-zone of the antenna

and subtends a very small angle at the antenna, so that the antenna sees it

as very nearly a point source. Hence, it appears as a plane-wave at the

antenna. Barber's scattering program produces a plane-wave in any given di-
Jkor

rection, which when multiplied by the Green's function e /r, can be viewed

by an observer at the antenna as a spherical wave from that direction, the

curvature of whose phase front is negligible, i.e., equivalent to a plane-wave

weighted by I . The ground-reflected scattered wave, to be treated rigorously,r
would require that scattered plane-waves in all directions be reflected from

the ground and that the wave seen at the antenna is the superposition of all

of these waves. However, the theory of the plane-wave spectral representation

of fields A.-,A-2 shows that, if the receiving point is sufficiently far away, the

only significant contribution is that which obeys the law of reflection. Hence,

according to this approximation, in view of the large distance between the

antenna and the scatterer, and the fact that they are each in the other's "far

1-9
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zone", it is sufficient to consider only one ground-reflected plane-wave

from a single ground-reflection point. Invoking this approximation saves an

enormous amount of computer time since it saves us from another round of double

Fourier transformations.

Section 10 contains the analytical basis for the way in which the overall

computation must be done to provide for the inverse Fourier transformation of

the composite fields. This is done in the main program, with the aid of two

small subroutines labeled COMPUTECO and COMPUTEEF. The first of these sub-

routines performs a numerical integration of each component of the spectral

field vector on the angle t, [= tan' (By/sx)] from 0 to 27. The second performs
another numerical integration on Bh ) from 0 to 1. This double

integration procedure is done in computing the inverse Fourier transform of the

field components at the antenna in the absence of the scatterer.

It was attempted to carry out this same procedure in the case where the

scatterer is present. In this case, the inverse Fourier transform must be

computed at the position of the center of the scatterer, rather than the an-

tenna position. It was found that, with the scatterer present, computer time

becomes prohibitively large when the above procedure is used. It was decided

to make use of the stationary phase principle to evaluate (approximately) the

integral on *B analytically. A justification for the use of this method is

presented in Section 10.

Section 11 contains numerical results and conclusions therefrom.

1-10
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2. MATHEMATICAL MODELLING OF RF INTRUSION SENSOR SYSTEM

The generic system that is the subject of this study is shown in Figure 2.1.

The point 0 on the diagram is the origin of coordinates.

Scatterer

Z Receiver #m

08 P

rP x
Source A1 0

IGround

Figure 2-1. Generic Free-space System Geometry

Consider a collection of N sources numbered with an index Z ranging from

1 through N. The source numbered z is centered at a position P' designated

by a vector r;, originating at 0 and terminating on Po " It occupies a small

* volume around the point P, but this volume is assumed to subtend a very

small solid angle when viewed from the position of a receiving point and hence

appears to be a point source at the receiving point. There may be a number

of receiving points; hence they are numbered with an index m, ranging from 1

through M. The mth receiving point Pm is designated by a vector originating

at 0 and terminating on Pm

The scatterer is centered at a point Pos, designated by a vector ros

2-1
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originating at 0 and terminating on Pos".

The point P is an arbitrary point in space, designated by a vector r,4,

emanating from 0 and terminating on P.

We denote the electric field vector at the point P due to excitation of the

tth source by a three-element column vector [E (rn) ] whose elements are the

rectangular components of E in the basic (x,y,z) coordinate system. This

system, as shown in Figure 2.;, has its z-axis in the vertical direction (up-

ward) and its (x,y) plane along the ground surface. Thus, the electric field

at the arbitrary point P due to excitation at source t is:

E' (r)

[E (r) - E (r) (2.1)

.0.1 (*yL.Etz rd

Using the plane-wave spectral representation for the electric fieldA-lA-
2

(Appendix II, Eq. 11-3), we have

A jk8. -ikiBzz jkIozlz-

(2.2)

where r + 4 iz; 4 YX~

• 4(-. . (, Jk4" .  -J.z Z J (3 (

i

- and + refer to the cases $z = "( zj (downward propagation) and z +Is

(upward propagation), respectively.

2-2

. . . _,., ' ..-1-' .



where

E-; .(! h)

The magnetic field vector at Pm due to excitation at source 2 is given by

0 0 J k h *P -j k e z m r
[H (rm)] = ff d2  e  {e [kIzZm .. (!h)]

-40

+ e j k+h ]} (2.3)

where (from the Maxwell equations H 7 x E)

0 +SzI By

IF

-y Sx 0

The fields E and H2 have four contributions as follows:

= (a) + + EE(c) + + (d r)] (2.5a)

CH (r)] ( [a)(r)] + [H( b)(r)3 + [H(c)(r)] + [2.d)(r)] (2.5b)
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where the superscripts a, b, c, d correspond to the following:

(a) Direct wave from source Z to point P in infinite free space (i.e.,

in absence of ground or scatterer)

(b Reflected wave from ground due to excitation of source I in absence

of scatterer, as observed at point P

(c Direct wave from scatterer (as if the scatterer were in infinite

* free space) where the fields incident on the scatterer consist of

the superposition of the direct wave from %, to the scatterer and

the ground-reflected wave at the scatterer resulting from excitation

of source Z.

(d Ground-reflected wave at P in response to the scattered wave fields.

It will be shown in Section S (see 5.18a) that the plane wave spectrum

of the reflected wave field (superscript (b)) is related to that of the in-

cident wave field (superscript (a)) by the expression

=[RE()[i~) (2.6)

where [RE(!h)] is given by Eq. (5.18a) and Eq. (5.19). The receiving point

is always above ground-level; hence the subscripts and the incident wave at

the ground reflecting point always propagate downward; + and - are used on the

reflected and incident waves, respectively.

The plane-wave spectrum of the reflected wave as given by Eq. (2.6) cor-

responds to the wave with superscript (b) while the spectrum of the incident

wave corresponds to that with superscript (a). Using these superscripts in

their appropriate places in Eq. (2.2), with the aid of Eqs. (2.5a,b) and (2.6),

we obtain the following results:

2-4



Case A: Presence of ground not accounted for; scatterer not present. FieldsK at point P are [see Eqs. (2.2) and (2.5a)]

E(a)(rrr d2 !he e, z ~)!) (2.7a)
- 4.cs A ff .~ij~~ iI Z -(a(

if source is above P

ffd2  e eih'P e1 Z E, ) (a

if source is below P.

where

i(a)(0h) =spectrum of electric field due to source I. in infinite
4+ ~ free space,

and where

Oz= +Iszl for subscript +

zfor subscript -

Also, from Eqs. (2.3), (2.4) and (2.5b)

jkSh -jkI~ziz -a
[H.~cs A(r)] d2 $~ e e [(.))E(.)] (2.7b)

If source is above P

ffd -Oh e h e'Z cP+(h)1Y:+a(Zn)

25if source is below P.
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Case 8: Presence of ground is accounted for; scatterer not present. The

fields are (see Eqs. (2.2, (2.3), (2.4), (2.5a,b) and (2.6)).

E~t~r)Jcas B*[a(r)] + bC (r)] (2.8a)

[Ht~)cs [ * D )(r)) + CHb) (r)) (2.8b)

wher EEa))and [Hal are given in general by Eqs. (2.7a) and (2.7b),

respectively, with the aid of Eq. (2.4), and where (from Eqs. (2.2), (2.3),

(2.4), MUMa~b and (2.6)),

4 case B !h

Q (b)(Q) case B ff d2  h' e e kIzZ CP+(!,')][RE(j,)(a)(!h))

(2.9b)

where EP4(!,')] is given by Eq. (2.4) and the matrix CRE(,')] is given in

Section 5 CEqs. (5.18a) and (5.19)).

Case C: Presence of ground is accounted for in determination of the fields

incident on the scatterer but not in evaluating the scattered field

(i.e., ground-reflection of scattered wave is neglected). In this

case, the fields at point P are: (see Eqs. (2.4 through 2.8b))

* ()cs E [a)() E()() + [E~c)(r)1 (2.10a)
4.~4 caeC4(~)r)+r~)
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(HL )cae [Ha) (r)] + CH( b) (r)j + [H(c)(r)] (2.10b)

where [ a)r] Ma(),[(b(r]ad[b) ) are given by Eqs. (2.7a),

truh(2.6). The field vectors [E(c)()] ad[(c)C)wilb dsc se

throug (r) (d) an eH e r]wleicse

jkI6 Iz
+e Z } (2.11)

where

(ia)(b=

+ [iS()~fC(a)+(b)(.ahl

+

and whereJ,~s 2 ) n

are 3x3 matrices, and
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We will not discuss the details of this constituent of the field at this

point.
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3. SPECTRAL FIELDS FROM A RECTANGULAR SLOT

We will approximate the slots in the cable as rectangular. Since the

slots are always small relative to wavelength, the exact shape of the slot

will not be critical. This supposition is borne out by the approximations that

can be justified when actual parameter values are assigned, as will become

evident later in this report.

Let us assign a set of coordinates (xi, yi, z) to the 2th slot, together

with a "length" L2 in the xi direction and a "width" W in the yi direction and

a slot center located at a point (xi0 l yi0, z') We note that the (xi - yO

plane is in the plane of the slot and hence zjo = 0. We have not specified the

origin of this coordinate system.

Referring to Appendix III, Eqs. (III.6a,b) and (III.7a,b), points on the

slot are designated by a vector

r ' + A (3.1)

where r' is the vector representing the center of the slots.

The vector referred to in Eqs. (III.6a,b) and (III.7a,b) emanates at the

origin of the basic (x, y, z) coordinate system. Therefore, it would be cor-

rect to designate the vector r' as follows:

r =x + + Z (3.2)

where (x9, Y10, Zzo) are the slot center coordinates in the basic (x, y, z)

system.

The vector Ar', on the other hand, which refers to the displacement of a

3-1
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point on he slot surface from the slot center, should be expressed in the

slot coordinates as

s (3.3)

where (x', , z) are the unit base vectors in the slot coordinate system and

Ax' and Ay' are the displacements from the slot center in the x and yj di-tI

rections, respectively. There is no displacement in the zj direction, so it

is clear that Az = 0.

We will now make an additional assumption which will apply in every case

considered, namely that the most general spatial dependence of key terms in

the vector field components

n' x E, n' • E, n' x H and n' • H
4. 4. + 4. -0 + 0 .

in Eqs. (III.6a,b) and (III.7a,b) is exponential in x and yj. Moreover, the

exponential dependence is the same for all four of these vectors. Mathematically,

we can express this with the statements:

n' x E = C z) e .3.4a)
n -angz

n n E (z,) e (3.4b)
n

i I  ,n' x~ H = C cn (z') eik °(E'  n yl) 34)

3-2
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Figure 3-1. Slot Geometry
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•k (C x|, YO

n H n jk ' ( e x111 n (3.4d)

where it is indicated that the vectors C( ) and C and th: Scalars C anda d .cn sba
CdnY are in general functions of z and n and rn are in g-neral complex.

Ile should carefully note here the fact that the coordinates (x, 0 , yjo , z()

are the coordinates of the slot center in the (xi, yj, z') system. The origin

of thi5 system will generally be placed at the launching point for the energy

that drives the source and this origin has no relationship to the origin of

the basic (x, y, z) coordinate system. Failure to take note of this point

could lead to confusion in the formulation of the equations to follow.

Substituting Eqs. (3.4ab,c,d) into Eqs. (III.6a,b) and (III.7a,b), we
P, ~ + + -, r

would obtain [where + I I and t.. ,+ + a he (x' Y z

components of r'+ . Note that the components of + in the basic x, y, z system

are xl f , _ + and the components of the slot center in that system are

Xo YZ0, zko. [ Also note that we have not indicated explicitly the spatial

dependence of the modified spectral fields fin what follows.]

2
(j k 0 jk0(ax 9.°+OY ° Oz'zz°){[I+(3)I (3.5a)

. -- n

f+

-- (j ko  H.(jh x +} n
[1(. 4 , 0 e {[1 (3.5b)

where

= e

jk L /2

W/2 jk

d(Ay)e 0 ny9

-W /2
-39.1
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-1 (z ,o) -~ [,-x c (Z' )-

*O*--f . -,.i. £0( ; -,Id-nv 'O

#' (3.6:i)

iI J o( ._ _+ X " Y ) r L z/2 "" ' +
{[ ~ ~ nl ~l~ :O e n G x ('x)e I ' ' ; ( '  : ;

-L 12

IW  1 2  Jk k Ay',(,' -- )

d(Ay) e 0 [Yo Ca, (Zo)

-W /2

[- % x C~)cn( o) - 2 Cdn.(72 o)Ij (3.6b)

The integrals in Eqs. (3.6a,b) are easily evaluated. They are "sinc"

functions (i.e., -,inx ) with co'nplex arguments. Incorporating that fact into
x

Eqs. (3.6a,b) with the aid of Eqs. (3.4a,b,c,d), we can summarize the results

as fullows:

(jx + )2 -,IE(h)£ W' e e

h n

... sinc [ko(., - n sinc - n)0x n 2 o y£ k 11 2

(-z C ~ (Z'0o) [ C (Zc'O) - (+- x Ca (Z ))]} f*

(3.7a)

i.9i



-V'

4j %)2 _ xko 4Py o+yI zlO) jko(r x' +: '

21 c ' - c '0 (

{Yo-a( Z' o) + dn C ;(Z~o) - x .cn (Z'.))])ft

(3.7b)

The fornms (3.7a,b) will be used in Section 4 as the basis for developin.'nt

of the field expressions to be used in our final results.

p+
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4. SPECTRAL FIELDS FROM SLOTS IN A
COAXIAL CABLE LAID CIRCULARLY

We consider the source configuration to consist of a leaky coaxial cable

laid in a circular pattern, with the radius of curvature of the configuration

sufficiently large to justify considering the propagation down the cable to

be equivalent to that along a straight cable. The geometry is shown in Figure 4.1.

The local cylindrical coordinates used within the cable in the vicinity

of the Lth slot are designated as (ral, 0", z") with corresponding rectangular

coordinates (xij 4", z"). The inner and outer conductor radii are denoted by

a and b respectively. The finite thickness of the outer conductor is neglected

in designating the radial coordinate of the slot; hence, r" b in all cases.

The radius of the cable configuration is denoted by R. In all cases to

be considered, it will be true that

ka << 1 (4.1a)

k0b << (4.1b)

R >>a (4.1c)

R >> b (4.1d)

kR >> 1 (4.1e)

To obtain needed relationships between coordinate systems, we consider

* Figure 4.2a,b,c,d.
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z

x (a) Cable configuration

slot ft (b) Coaxial
to cable

b Launching point f or
wave energy propa, ation

z a tt yalong cable

(c) Cable coordinate
system rov,411,zo

Figure 4-1. Geometry of cable
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. Looking
vertically

downwrd S O Coordinates of point P
Sl in system S =(x. y, Z)

Sx

(a)

E Coordinates of point P
Looking in system Si = (xj ,Yj~ Zj
vertically
downward so #1x - R Cos + X, (4.2a)

st y -R si n *,to+ yi (4.2b)

x z b zi(4. 20

xi = x- R cso (4.2d)

yj % y- R sin ~ (4.2e)

(b) i= z -b (4.2f)

Slot ftCoordinates of point P
Looking Softin system S~=(~ ~ ~
vertically yT i 2 .yZ

downward 2OP x

Ai x cos COS - y sin Oto (4.3a)

x Zi- Zj(4.3c)

=j xij cos *to + Yj sin 010 (4.3d)

yj -xi sin + Yj cos *to (4.3e)
*1 (c)

i= zj(4..3f)

Figure 4-2. Coordinate Systems
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.. ~..Coordinates of point P
Slot ft In system Si N x, yi. ZP)

2 3 (4.4b)
S3 'Zj z sin + yj cos *, (.c

Looin dow (4.4d)
cable axis
near Slot ft (d) *j - -x sn o + Zjcos 4 0  (4.4e)

3 X2Cos to+ Z sin *~ (4.4f)

r z2

Coordinates of point P
ziz nSystem 4=(4y4 z)

-jX (4.5a)

=4olYj-Y (4.5b)

e, X2 zi b + z4 (4.50)

*Looking down Y2, 3 4 X i (4.5d)

near Slot ft by y (4.5e)

zi = -i b (4.5f)
(e)

Figure 4-2. Coordinate Systems (cont'd)
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Fraom the equations in Figure 4.2a,b,c,d the point P has (x, y, z)

coordinates given by

x aR cO os + Xj - R COS 010 + XjCOS *Zo - yj sin ot

= os +tz o to o - x sin t

=csto + tobz~ to Xtof to

(4.6a)

y = R sin 0 o+ Yj - R sin *1,o + xjsin o + iCO os

= R sin 0 to + (zj O co - yj sin o~)sin o + xCOS

sin sin + [(b + zj) cos y4 sin 0" sin 0. + 4COSos o

(4.6b)

z =b + zj b + =i b + (zi sin 4Cj 0 + yicos 0

=b + [(b + z4) sin 0 + Y4j cos 0 (4.6c)

If P is at the center of Slot ft, then

x4 = y = :0(4.7)

Substituting Eq. (4.7) into Eqs. (4.6a,b,c), we have for the (x, y, z)

coordinates at the Lth slot center [with the aid of the condition (4.1d)]
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x ,o = (R + b cos cos R cos (4.8a)

Yto a (R + b cos 0 t) sin *to R sin *to (4.8b)

to tob(1 + sin 0") (4.8c)

Note that [see Eqs. (3.1), (3.2), (3.3)], if Ar = xx + yy + z,

B• r - B=x Axj + Oyy + jzl Az2

= Axi(-B x sin €9o + B y cos j0 o
)

+ yi[-(B x Cos 0o + By sin io)  n Bz COS

(4.9)

where it follows from Eq. (4.8) that

fix+;& =(4.10Qa)=,. BxL -C _ x sin to + B y cos OLO(4.0a

= -( x cos *Zo + By sin Oto) sin OLo 1Bz cos *1o (4.10b)

B*- 2 (4.10c)

The exponential factors in Eqs. (3.5a,b) can be written [with the aid of

Eqs. (4.Ba,b,c)] in the form

4-5

itt



e-jko(SxX X o0 +'Y B z Zgo)

"e -ko0ah (- bcosq o) cos (€zo" 08); j k0 1B1 z b( 1+StnO.o) (.1= e(4.11)

where

8h = tan- (ey BX

The slot center coordinate xio appearing in Eqs. (3.7a,b) is the displace-

ment along the cable of the Lth slot center from the launching point for wave

energy propagating down the cable [as indicated earlier, this point will be

designated as the origin of the coordinate system defined with respect to the

cable itself, i.e., the (r", 0", z") system]. It is easy to deduce (see

Figure 4.2) that (if subscript to indicates Lth slot center for all coordinates)

Xio =z o - Rjo (4.12)

The other slot center coordinate appearing in Eqs. (3.7a,b), denoted by

is the linear coordinate corresponding to the angular position of the

slot center around the preiphery of the cable. It is evident from Figure 4.2

that this coordinate is given by

yj= b4" (4.13)

The approximations used to justify the modelling of the slots as rec-

tangular (ignoring the curvature of the slots both along the cable and

around its periphery) and thereby justify the use of Eqs. (4.12) and (4.13)

are:

4-6
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(1) The radius R is so large and the slot length Lz so small that in the

vicinity of the zth slot we can ignore the curvature of the slot alonI the

cable, i.e., in the direction of wave propagation.

(2) The slot width W is small enough to neglect the curvature of the

slot around the cable periphery.

The forms (3.4a,bc,d) used to represent fields are valid in the case of

propagation along a coaxial cable, since fields can be represented as a series

of propagating modes, where the nth mode has a factor

-jk z1" jno"
Fn(z", 0") = e zn  • e (4.14)

where kzn is the complex propagation constant of mode #n and n is the mode

Integer.

To relate Eq. (4.14) to the forms (3.4a,b,c,d) we set z" and 0" to z0to

and €" in Eq. (4.14) and then, with the aid of Eq. (4.12)

= zn(4.15)

where

kznR - jan
kzn k= kznR + J znI = kznR Jcn

znR

vn n phase velocity of nth mode in meters/second
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at C~i~ ~ ju o~n wwodr inll x.o~

0

Zfli "n

Frc,'i En-. (4.13), (3.4a,h,c,1) , and (4. 1 )

'I n

Thp varia ble 7' -in Eqs. (3.4i,h,c,d) ii, thec radial coordinate r"; hence_, i-we

can desiqnate Crn Cb . tc. in Eqs. (3.4a~,h,c,d) as functiotbs of the value

of ;- at the slut, which is :;qual to h, the outer radi us of t cable. Thus ,

the foriis of Eqs. (3.7a,b) for the special izatior in this section are [using

Er,,. (4.11) through (4.16)]:

(j k )2 _jk ~(h+bcos" )Cos( -y

sic~k 1, bl+n" + k (kn j k , *

ez 0  z~~ + ~ [0 &(h Y- e& x kb)o 41

k L
.Q9 + +ayn-



n

- ~ Ci~) 40~~z )K JY,

tici

Y C ~ + Er *Cfl . Cq b)1 (4 .1 71h)

f

whore i n Eqs. 4.i/ a b) < and ar qve by P's . 94Va,)o

Frowi Appendi x TV, wo knuot: tha t an 6 rb tra r. ird 2 wilIl have the gcnc-'- c.

formns [where slibscripts (r", ,", z") deniote coryon:ents alon-i the indicated

diriec-:ions and (1- , 9) are the unit base vectors in double-priwexd

* cable coord i n,,tr, system)

Can z I EVI(b) - (")(b) (4.1.9a)

Eb. W ~ (4 .18 )

C d9, H r b) (4.183d)

wjhere,, in general,

17(b, ep" 'F (n) he-j0k7nz n
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* and where

j =0 for a TE mode

=i 0 for a TM mode

and

-En) (n)
z =O 0for aTEM mode

It is easily deduced from the cable geometry that

_ (Co O* o 10 (i , cos o")+ 2(sin szo) (4.19a)

= (-cos *~sin + y(-sint sin "o + i(cos C' (4.19b)

si to+Ao (4.19c)

Substituting Eqs. (4.19a,bc) into Eqs. (4.18a) and (4.18c), the x, y, z

components of the vectors C and C are:Ian ,I-cn

=at z - i ZT1 b + cos kosin Ott Exit(b) (4.20a)

Cay =Cos *o E01 b + sin sin _~ 4?)(b) (4. 20b)

nb)
Caz= -Cos 0 E("b)(4.20c)

cnx -sin Ojo H; M + cob) sin CO ()(4.21a)C 11 t co * ~fb
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C -Cos : 1( )( )(

r'om Ecs. (4.20a,b,c) and (4.21a,b,c), tha bricketed c c~in in Eq2.-,

(4.17a,b) are given by

Z, c(z (b + [3C WQ f)f4 x C~ (b)]I) '

x y F + F- (4.22a)

and

F c nZ(b) + fil C,( b) [P- x C () .

X x+yFi + 'zF- (4.22b)~'Hx4'iY Hz

where

F~ =(Zrsin It (b) - cos ton ZISbf

+ xErI b + IJ37I[cos Oz (b) + sin sin c ~ (b)]

+ i [cos 4)" E .,(b)]) fY (4.22ax)'

=(.[cs tJ(") (b) + %in 6,.sin aQn)-( n)

+ Y -~ b r, [cos OY,. El(b)]

* I 4-11



(r ) (b )/

F+ L

_E~ rZo - cos b s in e,.

Et V-([co i (b) + sil s in 0.. -( ) ]

+ [Co., "'Y'O Yb .Z (4.22bx-)

IF li Opil(b) Co sin sin 0 b

+ Fn (b)y r -i [O g( )

+.P K~[sn-cof;+si si F(4n) (by)

+ k(Y0 cos k 0  Z11(b)] f I(4F.i.b)(

- (YEcsn R TH(Jn)(h) + cs h sin (b)

- ~ros i~n)(b + in in () f~ (4.22by)

[s inCos in 1-(b)



FrH) Eqs. ( T.7: .b), (4.,'oXY )' o,.I (4. ?2bx,y,') we h.,ve tLw, fol-

lo'i n e.;pressiow tor the x, y, z coo )on -L, ,f th- p!if'n-,.,,-vv sie:tra uf

the fi l.ds from SIoL 61 with f:: c, fo p'opa.ting al ,;n' 1i , cth le

(:= .. ..... e " h F i)~ ;. ) ,rr

n

[H+(0h)l x-
y
Z.

-jo - b(l+sin ''z " " Jo zF) n " o

... e ."e

k L + k W14 n
sinc [ . --- (,Rx, + kz )] sinc [ 2 (-

11 r" 12 13 z

21 22 23
31 32 33
41 4? 43
51 52 53
61 62 63

+ () ?,( ) + D ( ) (n) (b) + (9.) ,(n)(b)

21 22 23
31 32 33
41 42 43
51 52 53
61 62 63 (4.23a,b)

4 1

11 -41

21 51 y



31  61  + I0zl

41  51 61  11 1 31

A12  B42  -~ z t

A(L) - (Z~) +
22

A(') - (t) ( o ti ysnOo
A32  62  -( x cos +

A('e)x YY o ,,(M
A42  0 sin 4o' -0 12

A52 )Y cos oL -ro 22

Am " a .

6 2  32

A(t) - B ) i + j os I n 0 sin + Cos 01

A(' 8(t) C&O B cos ot inOl os O
A23  3 IzI toS Sf o

A(Z) B(1) (asn o + Cos s in~)A33  B63  £(. sifto to

A43  YO Cos o sin Yo 8) )
43 0 70 13

A 3
) " Yo sin 0 sin .1o - o To°

4-14

, - " ' ln4



Y
A(z) "Y Cos " o-
63 0 o- 33

If is not the same for all slots and if the slots are not uniformly

spaced along the cable, then the procedure for computation is the programming

of Eqs. (4.23a,b) as given above for each value of the index L, followed by

accumulation of the sum over 2 from 2 - 1 to k = NS, where Ns is the total

number of slots along the cable. If this technique is to be used, then taking

advantage of various approximations that apply, such as Eqs. (4.la,b,c,d,e),

to simplify the expressions is not very productive, since the effect of these

simplifications on computer time is negligible. A program has been written in

accordance with the above procedure to allow for the possibility that we might

wish to evaluate the general case where the slots are not all of the same

dimensions and not all uniformly spaced both along and around the cable. In a

practical sense, this computation might involve a prohibitve cost in computer

time because Ns, the number of slots, might number in the thousands.

For those reasons, we find it necessary to search for justifiable simpli-

fications in Eqs. (4.23a,b). Fortunately, in the problem of immediate interest,

the cable's slots are all placed at the same angle around the cable and are

uniformly spaced along the cable. Thus, for this case

" - " for all values of X (4.24)

, 2 o 10 
+ (t "  Ao 0 01o + 2A (t 1) (4.25)

tS

where 01o is the position of the first slot center, A *o is the angular

Aspacing between slot centers, and since the Ns slots are distributed uniformly

4-15 4 .



(!long Lhe i ntw.2 cah1I, P1 0

1. -'L for o11

Wy,:-.W for ill S! (4.27)

It is shown in Apec:dix V that over the r tr o.; of parameter values of

direct interiest in this study

sirc[----- (&x + k)j I for all . 11 (4.28)

and

k°  1,I1 n Wp

si [ .. -- - °  )] s-b (4.2.)
0

for all , n

Using Eqs. (4.24) through (4.29) in Eqs. (4.23a,b) we obtain, after

summing over all slots (i.e., 2. = 1 to NS),

":'' k +( y (j k "+Jko13zlb(l+sin,o) i rq," W f

z n 0 e • e 0 sinc ( )

* + >h x

S'i-k 0 (kznl?)Ol.

4-16
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li( ..........

[j(n)]

mE I

iR °-Ti)X
C[in)] z

+ y

in (4.30)

where (with explicit indication of argument Bh deleted)

i" B co *
- + Cos o( n)] (n[E- -- r" y0 zil 0

e ±Jolo -En) jZ R(n)

i ,, R(n)] s(n)
Zo sin €o nz"

e- "Jolo Z1En + jz (n) -g(n)

+ 2 [0 -of si 0BzI s 0 jZ0 O

[Z s ,ol-R(n)] s(n) ( 0 )
0 0 Z o  i o - "430~

e oLP -En)n

-,n)] S(n)

+ JZo sin €o S

4-17
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JZ 0sin 0in (4.0+

+ +JO10 En) 01 i
S--- -( - 0)~+ -i~ ~js"

0 0--- E z8 a) ~ -i8X+.8)4 ) ~ (4.30)'

(n)]z X C± jl?() + ZCos 0..T~) j St')

oE o z 4

+ e T- i pox n) + IzISn ~ a -(nY] (n)

e1 0* 
0Z 0*

+( V 0  +i *SY EzJJ -' (4.30)l

[a cs j ) + S Cos 0,* t)]"nx x yr y 0 toz

J01
+ Zu.) 1O, n---------------------------------------------------e--



J~10 --

K~~~ e' 1 8J~ i~ sin *"~ + Yo en)

-~ 0Y sz o~49

+ Y0 sin *gS() 4.0e

0 0' x + 4

-o

2 L+ INsIRl)sin+ytn

0 o Z~l(4.3)l

e+ y coso n)1  S 5.Ie

+..eCWL +)oy/Ns) An) S (4.3f)-

N 27r(4-1

s~n) S -jo~hcos[lo i (knR)[yr~tl)/
00 0 wl



II

N1e4 k J 'I ! c ° [ ' ' P. -k .. . ' Jk (kzn ) ? (" I )/NS]

... f (4.31c)

To evaluite Eqs. (4.31a,b,c) in cases where the effect of the factors f.

can b' approximated as unity, we can invoke the well known Bessel function r-la-
A-4

tionships

jxe s 2 1 J(x) ejp  (4.32a)

and

dp(-X) (-I) p Jp(X (4.32b)

which, when substituted into Eqs. (4.31a,b,c) yields after interchanging the

order of the summations,

S(n)
0

S+)_ (-1)p d p(ko 0 h R) e 2* ° -

S(n)

-" NS jp[ 2 (Z'l)/Ns]-j[2ml(I)/[s]

j1Xe[k 0(kzn R)1

[k 0 kz R) + 1

[ko(kzn R) - 1)

(4.33)
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We now invoke the well-known formula for the truncated geometric series

NS  NS- I -ZS S z V . 1 - ifNS #
= 1"' ifzf1

NS if z = 1 (4.34)

Applying Eq. (4.34) to Eq. (4.33) and noting that [as indicated below

Eq. (4.15)]

A kfljcf A
, kznR - jan , ,

kzn = k -kznR -j n  (4.35)
0

we obtain

IS(n) 1 1

s+ (-)p J p(ko6h e p -  --(sn)j P='=

-(np)'
S0

i-(np)

S (np) (4.36a)

where

[ j27rp-k 0k zR)I -2rctR1
S (np) = 1 e e n 2/s(RN~ i f lot 0

0 i ej2TrP'kkznRR e'2r n

= NS if p k0 k znR R + 21m, where m is an integer and an :0
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[~ j27rp+1-k k 2iranR1

S -n)e 0 Zfl? *e- nia 0
+ i(27rfNS)[p+1-kok zfRR] e27nR/NSI n

J27r[p-l-k 0 k znRR) 27ra nR 1ifc

eeJ
N NSif p -k k izRR+1I + 27m and a n=20

Using as a basis the approximations justified in Appendix V

we will assumne that k 0k zRR, which is a very large positive number, can

be approximated by an integer, i.e.,

ka znR R q, where q is a positive integer greater than 20 (4.36b)

Also justified in Appendix V is the approximation

- 21ranR/NS
e ~ l(4.36c)

and the fact that

a 0 in all cases of interest (4.36d)
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At this point, we will test the equations (4.17a,b) from which Eqs.

(4.30a,b,c,d,e,f) are derived, to determine whether they satisfy the Maxwell

equations in their present forms. As noted in Appendix III, if Eqs. (4.16a,b)

are consistent with Eq. (III.6a), that is sufficient to confirm this con-

sistency. Performing the operation (Y0  8: x) on F+as given by Eq. (4.22a),

we obtain (with the aid of the vector identity ax(bxc) =b(a,c) -c(a,b), and

the fact that by definition Z Y0  I and of course 8±. x Si 0, 6 8s 1):
0 0

-t~ - a (b) +Cn(b)] (4.37a)

Performing the operation (-Z ff± x ... ) on as given by Eq. (4.22b), we

obtain

at .E +~ o(.,c b)) -bn(b)] (4.37b)

Performing the operation (8 .)on and Fwe obtain

8t ZI0 C (b)]- Cbn(b) (4.37c)

Yo[O y± Cat() + Cdnt (b) (4.37d)

It follows from Eqs. (4.17a,b), (III.6a,b,c,d) and (4.37a,b,c,d) that

the conditions required for consistency with the MAxwell equations are

z0L ~Cn(b)] C Cb~(b) =0 (4.38a)
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and

Y 0)8 .Ao,(b)] +Cdn(b) *0 (4. 38b)

For the particular case of interest, Eqs. (4.18a,b,c,d) translate Eqs. (4.38a,b)

into the form

nz(,.(b)(sO Z ~(b)(0 $I)-4 (b) =0 (4.39a)
0 * +0 z r

Y E' )(b)(O It Y P(b)(0 ~ if (b = 0 (4.39b)

For TEJ4 modes, where E(n), E~n) -rn)ff all vanish, Eq. (4.39a) be-
oil zo rot Zoo [i

comes

[E$. (bfE) ] oil (b) ](TEM)(B±.it (4.40)

and Eq. (4.39b) is an identity

For TM modes in the special case where the boundary condi-,ions require

tha E0(b Is~~b -i.(b) z; 0 and the TM nature of the modes requires

that =(, 0, again Eq. (4.39a) becomes
z

ril)(b)](TM) Z z0 VHIn (b)]T)± 4. ) (4.41)

and Eq. (4.39b) is again an identity.

For TE modes, in the special case where the boundary conditions
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*require that

* (<n)(b) H(nI(b) -0Sr.

and the TE nature of the modes requires that Ez = 0, Eq. (4.39a) becomes

and ~ n the _TE-qn

E.(b)E o z (b)jTE (8! 1) - i") (4.42)

and Eq. (4.39b) is an identity.
If 0were along i", this would imply a plane-wave propagating along the

cable.

At this point we will make an adjustment in the expressions (4.17a,b) and

the subsequent relationships derived therefrom. In effect, we are forcing

Eqs. (4.17a,b) into consistency with the Maxwell equations in B-space (i.e.,

those of a plane-wave with propagation vector g). Another way of looking at

this is to consider it as a matching of the fields just inside the slots with

the fields just outside the slots. The latter must obey the conditions (4.38a,b),

which in turn must be equivalent to the vanishing of the last set of terms in

Eq. (111.7), since both of these conditions imply consistency with the $-space

Maxwell equations. Such consistency is required of the plane-wave spectrum of

a field. The original assumption that the fields on the slots can be approxi-

mated by those of the wave propagating along the cable as if the slots were

not present is being replaced by the assumption that there is a small per-

turbation due to the slots. This perturbation changes the fields on the slots

just enough to force the plane-wave spectrum of the fields at an arbitrary

point in space to obey the Maxwell equations for a plane wave with propagation

vector a. The reason the original plane-wave spectra (4.17a,b) did not show
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cons i steicy with th,-se tquj tiuns was becau:se o. our i ns i sto.!c I e Lha'L L!: f k- I

o on the slot be exactly eti"al to tiho;e pri,:a,,Li,, do., ;, slol:, c.blr dt t,,-

sl)t position. Both oF thes-: s;eLs of pla-i,:--, ave specira (4.17 h ,b) ati.1 ho'.,,

to b2 given in what follows are rough approximations to the truth. It is s-

serted that the latter are betLer approxinu Lions than the forFer.

The indicdted adjustment in the original forms (4.17a,b) consists of re-

definition ofF- and F- in Eqs. (4.22a) and (4.22b) respectively, as follows:

x C(b) C (- x Canz o [i Cn(b)])f (4.43a)
)E (ZO- Cct' 0)+ >+Z - 0 + 4. .cn .b ] ,

- an (b) - C (b) - Y[ +- • a, (b)]) f (4.43b)

F+

Applying (Y f x ...) to F as given in Eq. (4.13a) yields

0 4 H

I +
Appl~ying (- x ... ) to F-, as given in Eq. (4.43b) yields

-z F (4.44b)

Awplying ( " •.) to R and ,.yields

+. - (4.44c)

13± 'F + 0(4.44d)

The equations (4.44a,b,c,d) establish the consistency of the forms of E±(ah)
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and h implied by Eqs. (4.43a,b) with the Maxwell equaticuijs (III.6a,b,c,d).

Tie quantities replacing FEx,. *. FHz in Eqs. (4.22a,bc,de,f)' are:

E- ' = i 3 ,Cos o

(n) o + Jzl sin si/ *)l si + ' ]

+{( - 2) sin J,, + cos ,]
ItI 0 x Zo y

+ {-sin o(0 -2) cos o x -F, sin )

"XlCO 0]+ Cos (4.45a)

+ n + -&-n)[.+ I sin

% x 2t - o -

gy,~n :[,01]+ @, 9o

,.+ ~)[g cs +Icos os0. in >o ] +-n)O

+ n)-Zof(i - 2 C os + B,,. P+ y sin ool
0 ): y Z

" z -z0{sin Zo((I - 2 sin - x y Cos

+ cos to f (4.45b)

zn (rn)[]+ cos + + sin

+z r~ [sn to y to
+ E--n)Zn,)[sin to (-O3x sin h o + 5 y Cos hjo ) ]
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+ II f~ [0,1 4. +in cosr~ -o y

01 ~) [2_
11 Z -j~~ 2 ICos + IrZI silln ,P Cos t

+ ysifll O (4. 4 1)

( )Zfl +-n[] _ Q[-Y _(i - sin ;z3x yCos~1

+ f(n) ~ ?. Q4~-3
z ~ . ((01fi O -PX s t - (3 y sin o

Ijrz Co + 1- ]+ H~~+~ICos

+ 1- 15 cos 0" + lszI sin S in (. d

(I-,+-)R" -(n)[o] + --(n) [ W{( - 2 o i

+ 1 ~[Y{sin ~(1- sin 1 P, Cos

~ zi 0 to + A)1O + Wz to

Ftn)~ ~ + +[

+ Hn[PCos 1 z bICos Sill 1) (4.45e)

(, ± )2.f 101~[o + I IZ YO(-ax si + 3yCos

+ T~n )i..v 0 ..I 2 Co +i JR3z sin "(,Cos

+, _($ si ~~i+H~O ~ KCos 00+ 8 sin
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+ ~ ~ () j 1 ( in + .ct;K !) 14

( rT.-e caso actually [W~'UI';..ed for Lhe ccmputer wo- th, wr it

corn, Iant ;m-' V,?. sl ots zurc spcir~ed o il ly a long the~c-b r~lt ~ io V:

cond ionus (4.124) and (4.25). For this case, the eypre5;sion, ajlon')-.S to

rz.(4.3Jr-j,b,c,d,e,f)' [ob!tannd frc~n Eqs. (4.45a,b,c~d,ce,F)] lirpe s fcol-

lows (in abbrevi a td n~otation):

+1) (n H r e l s n)))I)

F+ + ~[K~ + I~0 0 -a 2 -

y 3' y y
zzz z

(4. 4 ' a

zo -j

2i (4.7) Ix S 1 +L + +S

+ 0': )cos4x

I o (4.46b)

whe-re

( (n)R~n) T~n



= 8Z ! I + f(, ;j I a I sin o
z

+gn n)? ~A Z0  A, ]sin 0

0 j o A~ x 0

-Jay) z I (ax-iyJ

(4.47c)
-where

Ax (1- 2) + ijo a

-1Am~ +iloz sin 0

-(H -I II Hz

;+i181 ±10Z1

Fi~n) 9An)-I 0." X0 Z 0 in~

(4. 47d)
4-30

.41



[((n) -(n) _ 1 + -, j - , sin
--- y

z _J I azl I

-(Bx +je Y] -j (Bx+jBy )

+ -q(n)H, Zo  A .- ,, Zo o A"  ilo

-Ay_ -jAy

.$J Iaz I (Ox+JB y)J L1BzI(a x+J yL

(4.47e)

-(+n x _ 3Zn) sin o 0
Y I

.-(n)- -j( *+ A*

. + n) Y YiA sin sb°

0 x y

Ay jA

+_JIB( Jy . iB B+ y

+ij! aZ1 (X+j8Y)j L JZI(x+ily)j

(4.47f)

Specializations of Eqs. (4.46a,b,c,d,e,f) to the case of TEM, TE and TM

modes are presented below. These are based on the forms of the fields for

these modes developed in Appendix IV.
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TEN. TM Nodes

These fields are given by Eqs. (4.46a,b), where

(TEM n (TEN)

[(E+fl )0 IX~h 1(H+ )o 0 (4.48a)

y yz z

(TEN)

-(n) (T~n)
£(H+ )+~ Z Y 6 (b) -JAz

z -A18z

L ±jI o I (x-jy~j(4.48b)

(TE)

[(E(n) (TM d z .))(b A* C(H+ xJ r x ~() IZ

4--A2

Li VI8 $~ y)- 44c



r(n)(b C(n)(b) TEM V0  frT md 44ff ..-. ~ ~ ~ r"~~ Ln(b/a)b frTMmd 44f

(from Eq. (IV.4a)), where Vo M voltage between inner boundary at rIB a and

outer boundary at r" *b.

TM

b) go [~(b)n rk_* A An (k b) (4.48g)

r r ~for TEn moden k n c

[from Eq. (IV.llb)] where all quantities in Eq. (4.48g) are defined in

Appendix IV.

A * 1-8) + J8x (4.48i)

=w wave admittance (4. 48j)

For TEN mode

Y =Ea c mlex dilectric constant(.4k

For TMn mode

nnc
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For TE~ modes:

(n) (TE)

y

L 8zi 2 j(4.49a)

<zn) j(iT ) -Hn

y

Z

yy

E (n) (TEn) 0Tnn
UJA )J yZ (b TE~f ) + jffn)(b) sin

y
Z -Ay

z~) (TE) TE(H ~ n n ±IFI , n$)(b - j1T_'(b) sinl

y
Z

L- C 8,-iy). (4.49e)
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() (rL1.) fE~
__ [( ) 11 z ~ () J

b-fxj (4.49f)

I'E n A Enjnk
(b)*- = (k rbb E ) 2 1 (4.49g)

n A cn (k b

11 () I - TL ( b)(4.49h)

(TE,,) k z
W YJ (4.49i)

Other quantities used in Eqs. (4.49a-i) are defined in Eq. (4.400h,ij) or in

Appendix TV.

The forms (4.48a-k.) and (4.49a-i) are those actually progranried and

hence on which out- numerical results are based. However, in the computations the

sums over the cable slots, S() are not treated through Eqs. (4.33) through

(4.36). These expressions would be strictly valid only if flwr+prxmtl

unity. In the general case where f± is accounted for, thesusaerpcd

by integrals and a different technique is used for their approximateevlain
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rF-

First, %ie take advanta . of the fict that, in (4.31-a,b,c), pr:nat(r

values in all cases of interest are such thit [see (4.36b)]:

ko(knii) "  (4.50)

Equation (4.50) is used to justify the approximation

S S n) - S( ) (4.51)
0 + -

From (4.31-a,b,c) and (4.50), where

= + 2ir(R-I) (4.52)
N s

we have

2I -jk )+ kn*
S n )  ( n ) , n) 1 J der'f +  ( ')e B zn

0 +

(4.53)

where the dependence of f~ on 4'is explicitly indicated.

Noting that

* a
k kzn= kznR - j k (4.54)

0

where kznR is the real part of kzn and a is the attenuation along the

cable, we can express (4.53) generically in the form

S =  Sa + Sb

"-where [1 "J~ ~ i(ko3f')@(€') (.5

and where
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zFR 
C,

Ri

S, = e n Ci_)

R= xp cos q- cos ,') + i( sinZ-(7sin p')+z(7)

R = + p + z 2 2tcos(,' - )

8+-R 6hNP coss (,' )] +  z z]

1' r,? + z2 - 2 AP cos(i"-47)

Since ga( ) and gb($ ' ) are both real, and since

ko >> 1 (4.5)

for all cases of interest, the integrals Sa and Sb are both of a type that

can be evaluated approximately by an asymptotic fori given in Teference A.5,

pages 276-273. The method is based on a form of the principal of stationary

phase, but the case involved is that wherein there is no stationary point,

i.e.,

-- (&') t 0 at all points (4.57)d

Since d(O,)
d ' Bh sin (@' - ) - k (4.58)

and since kznR > 1 in the cases under consideration, and Ih sin (¢'-B)j < 1,
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it follows ilhat (4.5/) must hold. Since (4.55) also holds in a'll caes

of interest, the method is applicable.

The asymptotic solution is [Reference A.5, page 278, Eq. (6.57)]:

Sa =- ) - g ,, * a (' U) - ea

b,;) b bppy-- b
( '  I

(4.59)

where upper and lower limits 6 and for S and Sb are dependent on

the forms of ga (;,') and gb(') respectively.

R
Another term was included in the computations to account for th -

term present at points very close to -.he cable. This term was also

evaluated by the above et w

A.
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S. PLANE-WAVE SPECTRAL REPRESENTATION( OF GROUND-REFLECTED FIELDS

We can do the ground reflection problem for a particular spectral compo-

nent (i.e., particular values of ox and y) and having accounted for the

boundary conditions for each such component, we can then integrate over all

Ox, ay. This, of course, reduces the problem to the classical case of plane-

wave reflection from an infinite boundary between two media.

We will now outline the method of analysis which was carried out to obtain

the (x,yz) components of the reflected wave fields and to construct a matrix

relating the reflected fields to the incident fields. Since the literature

is replete with solutions of this problem there is certainly nothing new or

original about this portion of the analysis.

Consider incident and reflected wave electric and magnetic field compo-

nents for a particular value of (0x , ay) where incident fields are denotedx y
by (E1 , H1) and reflected fields by (E H ). We must also include the fields

of the wave transmitted into the ground, denoted by (Et, Ht).

For fixed values of (ox, $y) (see Appendix II) the horizontal components

of the electric field above ground (in free space) are:

Eix + Erx a e k(Xx+yy) x eikj~zIz + -rx eikIBzI (5.1a)

Z z z z

(where it is noted that the incident and reflected waves propagate downward

and upward respectively).

The horizontal components of the electric field in the ground (z < 0) is

(note downward propagation only)

. Jk( x+y) -JkOzZ

E tx tx e X e (5.1b)

Y y
z z
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where

Y as / 2  2~~

and v is the complex refractive index of the earth, given by

V vR + jV1  (5.2)

where

TR = +1 + ( o R

'V RJ+l( a '
CCR

and where ER = relative permittivity of ground, co permittivity of free space

8.854(1012) farads/meter, io a 4 (l0
7) henries/meter = Magnetic permeability

of free space, assumed to be also that of the earth, a = conductivity of ground

in mhos/meter. The horizontal magnetic field components are:

z>0

€ oJk(axX*B )eJkj~zjZ ~

* HI[ + Hrx = (ay Eiz + lazi Ely)

+ e kI zI (ay Erz " IBzI Ery)]  (5.3a)
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JkHOx+OB ) -jeIOz z(1 E)Hly Hry/ e C- xz~i +rxzi

+ e I BZI olrx Ox )) (5.3b)

z< 0

Htx U/O ei(x+~)kz(y t + Z ty 53)

tY /x z(-Yz itx - 8x itz) (.d

To determine the vertical components of the electric field, we invoke the

equations

v* Ei a Jk(Bx +. 68 E += (5.4a)
r r r r

V Etajk(8x Et~+ 8  t z~z (5.4b)

Solving Eqs. (5.4a,b) for E iz E rz tz in temfEi' E rx and equating

y y y
the tangential components of both electric and magnetic fields at z =0, we

arrive at the set of equations:

(IozIYz) Erx - (16zIYz) 'tx - (IezIYz) EiA

(zIyz) iry - (I 8Z) i ty a (IozIyz)E~(.b
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(B88y)Eir + M(l OX) YZ ry + C 8x8yf 8zI)tx + ((V2 -8x8i t

(B((l a82) Y) ti (5.5c)

M -8)y z Erx oxyyz) ry + ( ;jz)Ex+(xyai ty

(( 80 y ) z)Ex + (80~YyZ) Eiy (5.5d)

Solving Eqs. (5.5a~b,c,d) by Kramer's rule yields the horizontal compo-

nents of the incident wave, as follows:

E - 18Z z1  1{[0 2 _1 1  62Erx+ - (Yz + (I $ 2 + I$ 8Z+I$zY)Z z IziYz) ixIz) 1

+ [a 0 . (5.6a)

z Ii ( -IzIz X

~ry+ = +( iOzf 02 1 I$ ~ ~ ) .

+ [s; - j(3-8 + 18zIyz)) Eij~} (5.6b)

where the minus sign on ix indicates downward propagation of the incident

wave and the plus sign on rx indicated upward propagation. Invoking Eq.

y
(5.4a) for both incident and reflected wave fields we obtain the vertical

component of E r+from Eq. (5.6a,b)
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Ey.Z =O( Xz 1 1  l 8 O z lzYz E_( .6

r YZ + Iaz 1 - Oz + Is ) E(56

We can easily determine the magnetic field components from (5.6a,b,c):

Hrx+ u70/ (By 'r, - IOZI Ery+)

7+ (418Z 18 0 a + 1 zIz) E( 1 OZOO)

Hry+ ~ 1tz~x -
8 r+ 2 (+ (

(OO -02 Is (5.7a)

H rz+ (/C~ Eyzl~y+ - Ox Er+) OI OO Y + )(8i 0i~ 8  I

(-0 a 1$(5.7bc)

To~~~ zo~r Eqs (.6ab) (.a) withwllkon eulso

the~ ~ O refecio coficient of: pln ae ncdnna intrfc bewe

.1 7
5-y5i x i

rz x) -a+ lz
ToS

(5.7c)



two uniform semi-infinite media, consider the propagation vector 0 as in the

x-z plane, i.e.,

By 0 (5.8a)

8Z WCos e a (5.8c)

Consider first the case of horizontal polarization, implying that

E =0 (5. 9a)

E =-aEi (5. 9b)

E z=,0 (5. 9c)

where E.i is the complex amplitude of the incident wave. It follows from Eqs.

(5.8a,b,c) and (5.9a,b,c) that Eqs. (5.6a,b,c) take the form:

rx=0 (5.10a)

Ery+ = z - cos 8,1 (5.10b)

YZ cosI88ol

-
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where Yz 2  sin 2 eB

The results (5.10a,b,c) are consistent with well-known results on re-

flection coefficients with horizontal polarization [e.g., Stratton, p. 493].

From Eqs. (5.9a,b,c) and the Maxwell equations, the incident wave mnag-

netic field components are

Hix-. 1 lz Eiy " ei.lIcos e8l (5.lla)

(implying that Ely- = -)

Hiy- 0 (5.11b)

Hi z- Ox sin e (5.11

- , 0iwhrHi_-ste ope

(implying, as does Eq. (5.11a), that Ewhere is the complex

amplitude of the magnetic field vector of the incident plane wave.

From Eqs. (5.9a,b,c), (5.11a,b,c) and (5.7a,b,c)

z r 0)ci s (5.12a)~Hrx+ , z " Icos
' i. Y + (cos e~i co

0 (5.12b)j i-
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Hrz+ z "Icselr Co s ee sin e a (5.12c)

-z 6

For vertical polarization

Ely -  0 (5.13a)

Eix-= Ei- Icos e8 (5.13b)

iz- =Ei- sin e (5.13c)

where Et represents the complex amplitude of the incident plane wave field.

In this case, Eqs. (5.6a,b,c) are:

Erx+ ( "' z - Icos e ) [sin 2 68 - Icos 6eSYz ] Icos e8

Yz + Icos 6a [sin 2 68 + Icos e8 IYz

S 2 Icos 68 - Yz )lcos el (5.14a)

V 2 cos 681 + z

r.y+ 0 (5.14b)

$E

"EY Icos 6 [sin 2 8 - Icos 681Yz ]
Erz+ = -( e8 a si

E_ Yz co a [sin 68 + Icos oaly z]

v2lcos e8 " Yz sin e (5.14c)V' 2 ( 'Zcos eel + Yz
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From Eqs. (5.9a,b) and the Maxwell equations

ix- " 0 (5.15a)

"iy- C-tix - B Eiz-) o s + sin2

/O H - -(5.15b)

(implying that E- = - HI) "

tz- " 0 (5.1Sc)

Substitution of Eqs. (5.13a,b,c) and (5.15a,b,c) into Eqs. (5.7a,b,c)

yields

Srx+ =0 
(5.16a)

H1-

- = -s, co sin e - Icos e sy z

Hi Yz + Icos e8  sin 2 e6 + Icos esly z

v2 cos e- " Yz (5.16b)

v Icos eI + Yz

Arz+ 0 
(5.16c)

H1
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The results (5.16a,b,c) are consistent with well-known results on re-

flection coefficient with vertical polarization [e.g., Stratton, p. 4941.

It is sometimes convenient to write the results (5.6a,b,c) and (5.7a,b,c)

in terms of the angles (e6V *B), i.e.,

Yrx+ "+ 8cos1 ) 2 {ix_[(sin 2 eB(cos 2o )

z ICOS [ (sin 2 e6 + Icos 6BIyz (

- cos OBly z] + Ely- [sin 2 e8 sin 2€8i (5.17a)

( z " cos e8Il ( E sin 2  e l E. (sin2B)

Ery+ Yz +  Cos eBI )sin 2 eB + Icos a8lyzi 6 (sin 2

+ Ey.[Sin2 ea(-cos 2 ¢) - Icos 6BIYz 3] (5.17b)

where Yz= -
V 2  sin 2 B8

~rz = -sin Yz - cos 681 sin 2 68 - Icos eByz )Erz+  sin e0( Yz + 1cos 68! sin 2 l + cos e8Iyz )Ez- (5.17c)

whereYz v2 -sin2 6

Yz cose68!) 1
rx+ = (00 Yz +  cos 6B (sin2 6B + Icos e Byz)

1 (- Icos 68Y sin 2 68 sin 20,) Eix- + (-Icos 8,1[sin
2 6e(-cos 2Y8)

- Icos 68'1z1 ) Ey- + (-sin e sin 0 [sin 2 6- Icos eslYz]) Eizi

(5.17d)
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f~Yz-"J}cs 8 J 1B)

gry+ 

2 Cos .

4To Yz + jcoS g (sinz 6 + 1cos ealyz)

{Icos e [sin 2 es(cos 240) - Icos elYz]) Eix"

+ (Icos 68! sin 2 ea sin 248) Ey-

+ (-sin e, cos C*sin 2 e - Icos Belyz]) Eiz1 (5.17e)

( cZOs 68!
to ' ' cos eI ) sin e,(sin 08 -ix- Cos 6 i.y_) (5.17f)

It is convenient to write Eqs. (5.17a-f) as a pair of matrix equations of

the form

R RER 7RE17
rx+ Ell E . .ixi

=E = RE R RE23  E = R

ry+ R21 E22  E3i-E-i-

Erz+ RE31 RE32 RE33 E.z

(5.18a)
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Hrx+ R1411 )4l 2  RHI 3  x

ry+H2 H2 R23iy- *[R H] .i-

ryH RH31 RH2  H3 EHrz+ Rl RH32  RH33  Eiz

(5.18b)

REJKCO0('xy EJK sXs y

RHJK C0(8$X,B ) R J let

y Z + I -I [ 2 + Isz Iyz (5.19)

828_2 - '8'r

R Ellx1  x ay z

R E12 ' * 2 28 xBy

2 B2R E22 B - 8  x I - 18y

hy zz

R E13  k RE23  RE31 R E32 =0

RHil -21OI8 1 x8Y ="Z PI~ E12
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_Bl2 = 2 _ 2

fH13 m '~~h 'B Z = -ay RE33

2 _2
RH21 = -BIB -; Iazh'z1 IOZI Eli

%2 = 2I~l~x y 8 ZI 1 (5.19)

(cont'd)
A 2A

' 23 = sxEsh 16IzIyz) = ax RE33

RH31 y + zlz

%3 + Iziyz]

%1 33 =0
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6. FIELDS INCIDENT ON THE SCATTERER-COORDINATE TRANSFORMATION

AT INPUT TO SCATTERING PROCESS

The scattering theory that we are using confines itself to the scattering

of a plane-wave by a body. The spectral fields as given by the superposition

of Eqs. (4.16a,b) (the fields associated with the direct wave from the cable

slots) and Eqs. (5.18a,b) (the fields associated with the ground-reflected

wave from the slots) are the fields of a plane-wave propagating in the di-

rection of the wave vector a+. Denoting these plane-wave fields by ii(s+ )

and ), the next phase of the solution to our problem is to evaluate the

scattered fields when the incident fields are E(8) and

Before we can do the scattering problem, we must perform certain coordi-

nate transformations.

The Barber scattering program, which will be discussed in Section 7,

contains two coordinate systems. One is the "lab frame" and the other is the

"body frame." The diagram of Figure 6.1, due to Dr. Peter Barber, illustrates

the two systems.

First, note that Figure 6.1(a) and (b) which illustrate the "lab frame"

(whose coordinate axes are denoted by xL, YL' ZL) and the direction of the

incident wave with respect to the lab frame., The incident wave travels in the

+z direction in the lab frame (hence, a+ is/in the +zL direction). The

electric field vector of the incident wave, denoted by El(a+), lies in the

(xL - yL plane and is at an angle 0i with respect to the xL axis in a clock-
wise direction, looking along the +wL axis.

The "body frame" [Figure 6.1(c)] is characterized by a set of rectangular

coordinates (xB, yB, zB). The scatterer is pictured as a spheroid with its

axis of symmetry along the +zB axis. (This is only for graphical convenience;
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(a) Lab f ra

p

XL (b) Direction of
incident wave

ZL with respect to
lab frame coordinates

XL

(c) Body frame

xBB

Figure 6-1. Coordinate systems for Barber Scattering Program
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the theory does not require that the scatterer be a spheroid oriented as

shown.) The direction of the +zB axis in the lab frame corresponds to two

spherical coordinate angles, a polar angle ep and an azimuthal angle p, as

shown in Figure 6.1(a).

Our first task is to develop a transformation between the body frame and

lab frame coordinates.

A simple way to do this makes use of the diagrams of Figure 6.2(a), (b),

(c), and the accompanying equations (6.la,b,c), (6.2a,b,c) and (6.3a,b,c)

appearing in the figure.

From Eqs. (6.la,b,c), (6.2a,b,c) and (6.3a,b,c), the body frame coordi-

nates of a point (xB , YB' zB) in terms of the lab frame coordinates of that

point (xL, YL' zL), expressed in vector-matrix form, are:

-- J - [MBL]JC.] (6.4a)

and the inverse form

[r] = [MLB[ ) (6.4b)

where

1:B1 = -B

. YB

zB  (6.4a)'

lYL

L z L  (6.4b)'
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(a)'Ia L BCoordinate system (x L,YL.ZL)
Point P. has coordinates (x LOYL.zL)

is unit vector in +zdirection

ZI

p X

Pon Phs(xcodiae Rotate around zLaxis through angle

Point-Y P a XC, ZL')cocdint such that in new system

XC.~ *XLCos 0 + y Lsino (6.1.a) (x1'.y1 ,ZC), lies in (x L .ZLC plane

YC '-x~sin O + L Cos 0 (6.1.b)

z ZL (6.1.c)

Figure 6-2. Transformation between lab and body frame
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zZ

Point P has (xL" L zC&) coordinates:L YII LRotate around yCaxis through angle

XCU-xL'C059P - Z LIsine P (6.2.a) atsuch that +z L "and +z8directions

Y a L (6. 2. b) are parallel.

'C-xLsnep + zLIcose p (6.2.0)

(d) Rotate around z " axis through angle

y OF B OFcounter clockwise looking -z B direction.
Point P has xB.yB9JZB (body frame

coordinates)

ZB x a X LCOSOF + YL snOF (6.3.a)

YB8 XL "siflF + Y1
1cosoF (6.3.b)

Z 8 ItznLi (6.3.c0

Figure 6-2. Transformation between lab and body frame (cont'd.)
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(cos Cos p cos F (cos ep sin Cp oCO F (-sin ep cos OF)

- sin 0p sin OF)  + cos p sin OF)

(-cos ep cos p sin OF (-cos ep sin 0p sin OF (sin ep sin OF)
[MBL] =

- sin Cos OF)  + cos Cos OF)

(sin ep cos ) (sin ep sin P) (Cos p)

(6.4c)'

(cos ep cos p cos F (-cos ep cos p sin F (sin ep cos p

-sin 0 sin OF)  - sin 0 Cos OF)

(cos ep sin *p COS F (-cos ep sin p sin F (sin ep sin p)

[MLB] =

+ cos p sin + Cos Cos F)

(-sin ep cos F) (sin ep sin OF) (cos ep)

(6.4d)'
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We can use Eqs. (6.4a,b) to obtain a vector-matrix relationship between

the unit base vectors in the two coordinate systems. Note that the elements

of Er I and [r I are coordinates of an arbitrary point in the body and lab

coordinate systems respectively. The unit base vector along the XB direction

(for example), denoted by ~,terminates at a point P which has coordinates

(1, 0, 0) in the body frame. In this case, Eq. (6.46) would read

X L (M LB)ll (MB) 12  (MLB)13 1 (MLB)ll

YL (M LB)21 (M LB)22 (MLB)23 0 (M LB)21 (6.5a)

Z L (M LB)31 (M LB)32  (MLB)33 0 (M LB)31

By the same reasoning (for another example) the unit vector in the ~Ldirection,

denoted by ~,terminates at a point P with coordinates (0, 1,0) in the lab

frame. Thus, Eq. (6.4a) in this case would read

X8 (ML~ll (MBL)12 (MBL)13 0 (MBL)12

ye z (MBL)2l (MBL) 22 (MBL)23 1 = (MBL)22 (6.5b)

ZB (M 8031 (MBL)33  (MBL)3: 0 (MBL)32J
L LtLJ

From Eqs. (6.5a,b) and the fact [evident from Eqs. (6.4c,d)'] that

(MBL~jk =(MLB)kj' it follows that

=B (x + YL L )xl =(MLB)11 ^,L + (MLB) 21 iL

+ (MLB)3l !^L
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I'

•[(MBL)11(%L)12(MBL)13]' yL

L KJ(6.6a)

and

* x L+Y !B L C' ~)s . BL)l2 O + (MBL)22 iB
YL= 1

+ (MBL)32 !B = E(MLB) 2 l(CLB) 22 (MLB) 23] jB

(6.6b)

Arguments like those leading to Eqs. (6.5a,b) and (6.6a,b) applied to

all the unit vectors in both systems yield the following two vector-matrix

equations:

6 1 aM L1Z I (6.7a)

and its inverse form

C -] = CMLBJ)B ]  (6.7b)

where and are "vectors of unit vectors" of the form
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!L !B
I[AA •

L XL [ XJ~ B

UALJ (6.7a)' (6.7b)

We now wish to obtain (1) a transformation between the lab frame (xL, YL'

zL) and a coordinate system to be called the "ground frame" (xo, YO, z0 ), ob-

tained from the basic (x, y, z) coordinate system by a translation such that

the origin of the ground frame is at the center of the scatterer; and (2) a

transformation between the ground frame and the body frame (xB, YB' ZB). To

accomplish this, we first note that Figures 6.3 and 6.4 contain diagrams which

are both the equivalent of those in Figure 6.2 except for changes in coordinate

names.

From Figures 6.3 and 6.4 and accompanying sets of equations (6.6ab,c)

through (6.13a,b,c), by analogy with Eqs. (6.4(a,b) and (6.5a,b), we obtain

the following sets of vector-matrix transformation equations, analogous to

Eqs. (6.4a,b) and (6.5a,b):

"=B] [MBo]Cr o ]  (6.14a)

.1: "r )=(M 00" [r I (6.14b)

-4.0..8

:B -Bo1 ;o1

1^ 1 - "6.15b)
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(a 0zO Analogous to Fig. 6.2.a, x1 L:;O

zZL

YOP
Y. Ps Ilesi x yl plane

X

0 0

N I
0N

z bRotate around y'axis through angle 0

(b) so lies inpln

XX0OO~~~sf~ 68a

Figure~Anloou to3 Figurematon beteegrun

Rotate aaun bod axsrhrugmagl
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(o2)

2"1 x0I M xo cose b -zO siflb (6.9.a)
*2 0

Z ' -o axO' sine b +zoocose b (6.9.c)

X11 Analogous to Fig. (6.2.c)
0

and Eqs. (6.2.a,b,c)

(d) Rotate around z6' axis through angle

7 of H CCW looking in -zdirection.

ZBx B X61 cosoH y~o" sinH (6.10.a)

ZB0 YBUxdsifHl+ Yd'COSOH (6.1l.O.b)

ZB UZ (6.10.0)

Analogous to Fig. (6.2.d)

and Eqs. (6.3.a,b,c)

Figure 6-3. Transformation* between ground frame

and body frame (cone 'd.)
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(a) z 0Analogous to Figure 6.2.a

ZL *P ZL ~ ~x b-X0 X8- L

'0 L -0.Z ZB 1.Z L

0 YL(Note: a is along + zL direction)

(b) y' y 0-tate around z axis through angle

'2 O so L isin (x21-zi) plane

40x 2' 3x0co"s ,8 yoslno (6.11.a)
2, X

z2' ZO (6.11.0)

Analogous to Fig. (6.2.b)

and Eqs. (6.l.a,b,c)

Figure 6-4. Transformation between ground frame and lab frame
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(C.) (C. 2)

122

Rotate around y'axis through angle

xj -xjcose a-Z21sine e61: B o z2  Hz

Zj' - 2' si%* 2 cs 0  (6.12.b

~- Analogous to Fig. (6.2.c)

and Eqs. (6.2.a,b,c)

(d) Rotate around z2" axis through
angle *j, CCW looking in z

YL direction.

ZL x L XicosoJ +Yijsif4j (6.13.a)

YL -x,"sin J +y2 COS (6.13.b)I

2XII ZL(6.13.c)

* Analogous to Fig. (6.2.d)

and Eqs. (6.3.a,b,c)

Naw Figure 6-4. Transformation between ground frame and lab frame (cont'd.)
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[:L E4Lo).o) (6.1 6a)

Er 1=[M (6.16I.0 oL -,L (.1b

E m~o EM o)E (6.17a)

Eu I [ M ) EL)

40.0 oL (6.17b)

where

x 0 x -x s

.0 0

Lo zz5  (6.17c)'

where xs, Ys zs are the basic (x, y, z) coordinates of the scatterer

center,

x

u= y
-,.0 (6.17d)'

z
L J.
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(Cos eb Cos 'bCos (Cos ebsin os COS (-sin eb COS OH

-sin Ob sin OH + Co O sinOH

(-Cos sin CO .' (-Cos eb sin Obsin *H (sin 6b sin OHi)

[MBo)

-sin ObCos OH) + Cos Ob~ Cos OH)

(sin eb Cos Ob) (sin Ob sinl Ob) (Cos eb)

(6.1 5a)'

(Cos eb CosOS cos OH (-Cos Ob CoO sin OH (sin e b COS Ob)

-sin *b si OH) -sin Ob Cos OH)

(Cos eb sin Obcos 0. (-Cos eb sin *b sin 0. (sin eb si Ob)

+ Cos sin OH) + Cos *b Cos OH)

~~1 ~(-sin ebCS H (sin eb sinOH (Cos e)

(6.15b)'
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(cos 08  s 8 cos 03 (cos e sin 0, cos 0, (-sin es cos 0j)

-sin sin o ) + cos 08 sin 4j)

(-cos 68 cos 0, sin o3 (-cos e, sin 0., sin 0, (sin sin

EMLO) -

-sin 0,, cos 0,) + Cos 00 Cos )

(sin e cos (sin e sin 0,) (cos eb)

(6.17a)'

(cos e8 cos 0. cos 0j (-cos e8 cos B sin 4, (sin e8 cos i

- sin 0 a sin o) sin a Cos 03)

(cos e sin 8 cos 0C (-cos e8 sin 08 sin oj (sin ea sin 08)

[MoLl

+ Cos s n 0) + cos *8 cos oJ)

(-sin e8 cos od (sin 68 sin 0j) (cos e)

(6.17b)'
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From the viewpoint of programing these calculations, we must distinguish

between the variables that are specified at the beginning of the program ("given"

I variables) and those that are calculated from the given variables ("derived"

variables). Of those variables appearing in [MBo] or (MoB], eb and *b (the

angles specifying the orientation of the scattering body) are given, while 0.

is derived. Of the variables appearing in MLo ] or MOL. e and 0 a (direction

angles of 8) are given, while i. is derived. Finally, of the variables in

MBL] or [MLBJ, 8p, *p and CFare all derived.

To relate the matrixes [MBo] (or [MOB]), and [MoLJ (or [MLo1 ), we form

the matrix equations [from Eqs. (6.7a,b), (6.15a,b) and (6.17a,b)]:

= MB]EOLE.I EMBLJE LJ (6.18)

or

Z Lo _;o o t4o8)oi08) = MLBE B) (6.18b)

Either of the matrix equations

L o][ oLl (6.19a)

[derived from Eq. (6.18a)], or

CMLBJ = [MLoJEMoB] (6.19b)

[derived from Eq. (6.18b)] constitutes a set of nine algebraic equations (not all

independent) which contains the variables ep, Opt, F ObI eb, *8 , *9 0 H and Oj.

6-14
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(a)Anea

z Scatterng 4

C C

(b) Side view

z A

x-y plane

(c) Downward view

(c)
d

YA ---- -- AI

SA

Saterer,

ZT XS xG XA

Figure 6-5. Scattering procesees A and G
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All of the machinery for performing the coordinate transformations needed

to implement the scattering program is contained in the matrices (MBo) (or

[Mo.]), [MLo] (or [Mo 1)), and the matrix equations (6.19a,b). Fortunately,

we only require limited knowledge of the variables contained in those

equations. First, we must solve (in terms of known variables) for the variable

oj contained in EMLO] or [MoLl, since the other variables in those matrices,

e and OV are known. This is the purpose of the development to follow.

The Barber scattering program is constructed in such a way that the

scattered wave is evaluated in the (xL, - zL) plane. There are two plane-wave

scattering processes to be considered (see Figure 6.5). We will call these

processes A and G.

Process G is direct scattering from the body to the antenna. The wave

propagation vector, for this process, denoted by BsA and totally independent

of 0±, is along the vector .sA (Figure 6.5a) from the center of the scatterer

to the antenna.

Process G is the scattering from the body to a point G on the ground

surface followed by ground reflection toward the antenna in accordance with

the law of reflection. The wave vector for this process, denoted by 5 and

again independent of 8±, is parallel to the vector rsG shown in Figure 6.5a.

For the computation of the scattered fields using the Barber scattering

program, both rsA and rsG must lie in the (xL - ZL) plane. Hence, these

vectors must be perpendicular to the YL coordinate direction. The conditions

to be met are [with the aid of the second equation in the matrix relationship

(6.17b)]

IsA XL = (XA " XS)['cos a$ cos * sin(OJ)A " sin *8 cos(OJ)A]
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+ (YA -Y5 )'>COS 66~ siaSn(fJ)A + Cos 00 Co OS )A

+ (ZA -ZS)fsifl 80 S"4(J)A] 0(62a

SG iL- (XG -XS)(-cos e' Cos 4. -'() Sin 0$ Cos(YJGJ

+ (G- YS)[.cos 66 sin h~ sin(OJ)G + Cos 0$ cos(OJ)G)

+ (z6 - zS)[sln 68 sin(o. )GI - 0 (6.21b)

where YAand (JGare values of 0,for processes A and G, respectively,

and where, from Eqs. (F ?0e,g,f)

xG A zS ' )' ZA
6 ZA + zS

zG 0

*s -(*XS+(YA YS) +Z(ZA zS)

5G - xS) + *(G- Y)+ A(ZG - ZS)

Solution of Eq. (6.21a) for cos(0J)A and sin(oJ )A or that of Eq. (6.21b)
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for cos(OJ)A and sin(OJ)G (exactly the same form in both cases) yields

cos(*J)A * PSA cos e8 cos(O8 - OAS) - (zA - zS) sin 88

PSA cos e cos(O -OAS) - (ZA - ZS) sin 8,) + IPSA s "(00 -A)12.

(6.22a)

(PSA sin( O " OAS)sin(O J)A

-PSG Cos e cos(@ - OGS + zs sin 6

[IPsG Cos 6 acos( 6 -OGS) + z s sin o a] + [PSG sin(O a OGS)]2

(6.22c)

Ssin( OJ)G -, PSG sin(O B O GS)

l.l(J) [IPSG cos eB cos(O8 - :GS) + Z:S sin + [PSG sin(B "GS )

(6.22d)

where

PSA )/(xA -S) + YA

OSA tan' YA - YS

XA - XS
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03SG -X XS)' + -y 2S)

GG - XS

*xA z S+ X zA

XG ZA + ZS

YA ZS + YS ZA
YG zA +zS

At this point we will invoke three of the equations in the matrix equation

system (6.19a), as follows:

(ErBo]fMoI]Jk t4j~k (6.23)

(j=3, k =1)

Cos Oj(-[cos eb sin - sin ebcos ea cos(Ob - B

+ sin Oj(sin eb sin(Ob - 06) sin e6 PCos p(6.23a)'

( 3, k =2)

Cos *j(sin eb sin(Ob - 0

+ sin oj(-[sin Ob Cos es COS(b -8 COS - os b sin 8 )
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-sin e sin (6.23b)'
P p

(j -3, k -3)

sin eb sin 6 COS(b - ) + cos eb cos e a cos 8p (6.23c)'

Note that the left hand side of Eq. (6.23c)' consists entirely of given

(and therefore known) variables. This equation can be used to evaluate 6,

thus from Eq. (6.23c)',

ep Cos [sin eb sin 8$ cos(Ob - OA) + cos Ob cos 8$) (6.24)

From Eqs. (6.23a)' or (6.23b)' we can solve for ( and (¢p)G (the

azimuthal angle of the body axis in the lab frame for scattering processes

A and G, respectively) in terms of known variables, as follows (if 8p 0;
p

otherwise p)A and {¢p)G are arbitrary):

1l 1 
s n eI =cos- sin 8 {-cos (OJA [cos Ob sin 8$

- sin eb cos 8$ cos (Ob 0 6$)] + sin (OJ)A(sin 8b sin (Ob -0 ))']

(equivalently) sin' {Co (0 ) (sin 8b sin (0

sin 8 J A b b 0)
p

+ sin (OA [cos Ob sin 86 - sin eb cos 8, Cos (Ob - 08)
1 1)

(6.25a)

where cos (OA and sin (OJ)A are given by Eqs. (6.22a) and (6.22b), respectively,
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1and sin ep is obtained from Eq. (6.23c)'.

(¢~p) c  s  in e s - p {-cos (OA) (Cos eb sne

- sin Ob COS e$ cos (Ob - Od)

+ sin (OJ)G (sin eb sin ( b "

1(equivalently) sin "1 ( sin {co (OJ)G (sin eb sin 4b 06))

+ sin (JG [cos b sin e, - sin eb cos e, cos ( b " 0 )] 1)

(6.25b)

where cos (0J)G and sin (OJ)G are given by Eqs. (6.22c) and (6.22d), respectively,

and sin e is obtainable from Eq. (6.23c)'.
p

We must now obtain a transformation between the ground-frame coordinates

of the electric field plane-wave spectrum incident on the scatterer (i.e., the

field spectrum directly from the cable superposed on the ground-reflected

field spectrum from the cable. Both of these are expressed in ground-frame

coordinates (xo, Yo' zo)and the lab frame coordinates of these same field

spectra (i.e., the xL and YL components, since the zL component must be zero

for a plane-wave propagating in the zL direction). To this end, we write,

where Et is the incident field (spectrum) vector

Ei .:L EiXL + ~ +&(O) [E(L)]T ]X L iL+ L:
fi+ i + (6.26)
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where

E(L - zL L 0

(E I XL component of E.
ix L L,1

~~L~ component of

Eiy y ompoentof E~

L.i- z component of E. 

and where ) and [u 3 are defined in Eqs. (6.7a)' arnd (6.17d)l respectively.

From Eqs. (6.26) and (6.18a,b),

[ EL) M)T~OJ EIC (6.27)
=0- oL I-.I I ZL

* in longhand notation Eq. (6.28) takes the form
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XL (Cos ~~~ COS -U ( is Si n (>)

4- (COS 0Sin Cos +Cos c Sinl E. n

- (sin 0, 1os COS i (C.6

iL (cos 0 cos sin +j sin '1,, s ) x

- (Cos 0 Sin sin (os - C cos S Ey

.. I

+ (sin O sin j) Eiz (6.28b)'

E izL 0 = (sin 0 Cos ' ) Eix + (sin 0.. sin p) + (cos 9K) z

I (6.28c)'

where 0j = ( J)A and (OJ)G for A and G scattering processes respectively.

Since we know from the Maxwell equation V E 0 that

E - 1 [px li + Eiy]
i z y

l [sin e ( Cos + i s (6.29)

Cos 0 V ixi

it follows that Eq. (6.28c)' is valid, since Eqs. (6.29) and (G.28c)' are

identical. It also follows from Eqs. (6.28a,b,c)', with a little manipulation,

that

t] ' .. . ... .. .. J .. ... .... _ _... ... _ _ _ _ -1- , ",



Eix iix (Cos 8 [cos o, cos 0" cos o, sin 00 sin Oil)

+ E [sin cos Oa + cos 80 cos 08 sin Oil} (6.30a)
ly Cos 88 0sr

if 8e 7

Ey L = Eix " I-os -es cos *0 sin 0 1 + cos e sin * a C ]O

+ E [sin 0 sin o cos C cos 0.11 (6.30b)

if 0 -T

If as = j, then Eq. (6.28c) implies that (where subscripts R and I indicate real

and imaginary parts respectively)

(Eix)R (Ex) I -tan (6.31)
(tiy)R (xiy)i

From Eqs. (6.28a,b)' and (6.31), if 08 - , we can infer the following

relationships for real and imaginary parts of Eix and E

t sin 0j

ix )R EixR C"  " EizR cos Oj (6.32a)
r I n I

if0 8 O0, 883!-
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* (~yL)R El~ + sin (6.32b)
IY R iREsin 8  iz

if 0, 7t, e6

(Eix )R EiyR E AIEz cos 0,(6.32c)

II

7f t 3nt ,

Af fute ste isrqie2ocntutteInust h abrsatrn

prograJm.sn 6.2d
The~ ) amliud cos an0h nl , the poaiztoanlofheicdt

'IY
I ]IiI( Ia2 ~cs p)+1 a 2 6 i 2 *

A furth + step 1 rerey t constrsin theanput to) (if Babe sctern
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/ixI2
2 +Itizi if 8 a Y 0B O,ir1E1Vs- .i I Iizr ,e 3wo.

+ i if s , ' -2- (6.33)
Cos

The polarization angle 0i, assuming that the phase angles of Eix L and

Eiy L are the same (linear polarization) is given by

Oi = tan- l ( ) (6.34)

where Eix L and E yL are given by Eqs. (6.28a,b,c)' or alternatively by Eqs.

(6.30a,b) if a8 7 r/2 or by Eqs. (6.32a,b) if 8 r/2, 0 0,7r or by Eqs.

(6.32c,d) if 8 w/2, 0a 0 w/2, 3w/2.

If the phase angles of Ei and E. are not the same, that fact would
ixL iyL

imply that the wave incident on the scatterer is elliptically polarized. We

could exclude that possibility by assuming that, if a particular source should

generate a superposition of elliptically polarized plane waves, then for each

such wave the rate of rotation of the plane of polarization is sufficiently

slow that, throughout the scatterer region, where the incident wave can have

an influence on the scattered wave, the rotation of the plane of polarization

can be considered approximately constant.

Once the fields from the source have been found, we can determine to

what extent the relative phase angles between x, y and z components constitute

a problem. Since free space is a reciprocal medium, it would seem that it
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should not be a problem at all. Any plane waves propagating from the slots

should be linearly polarized.

To ascertain that this is indeed the case, we can examine the expressions

for x, y and z components of fields in Eqs. (4.46a,b), (4.47c,d,e,f) or the

specialized forms of these equations (4.48b,c,d,e) or (4.49a,b,c,d,e,f).

To obtain the field components we must add the quantities with subscript +

to those with subscript - (i.e., Eqs. (4.47c) + (4.47e), (4.47d) + (4-47fi),

(4.48b) + (4.48c), (4.48d) + (4.48e)]. The results of the first set of these

summations are as follows [where we note that S(n)_  (s(n))*]:

Eqs. (4.47c) and (4.47e):
X y z

Factors in oi, term +IzlRe + e O] +Izllm[S+ n  e O  -Bx Re[S+ n ) e 1 ]

term RedSlo a (n) elO
Factors in E zii term .±j8ZIIM[S+ e"' l fBzfRe[S+.n ey R eJ

Factors in Oi em ImEAx e (n)+ e ±1 y +ten) (in) -Jolo (n) ±O (n) elO

Factors in Rn) term -Re[A x S+n) e O] Im[Ay S) e ] +1BzB x Re[Sl n ) ej l O]

(All real numbers) (All real numbers) (All real numbers)

Eqs. (4.47d) and (4.47f):
x y z

Factors in - )(n) es+n e I ]+6zjIm[S(n) ej€ OI  -B Re[S(n) e j lO

-n)term +I ES(n) - (n) ej010 ] By Re[S (n) e- liO

Factors in term -Im[A S(n) e)lo] ReES eJo B Sy Re[sn) eJ1 0 o

y~)(n 1] _j[lO~ J1 (n) J01
Factors in zi, term Re[Ax S+n) e lo+ Im[A(n) e );IBzlBx Re[s+n e 0o

(All real numbers) (All real numbers) (All real numbers)
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From the chart above, it is clear that all three components, x, y, and z,

have the same phase. Each component associated with one of the slot fields,

e.g., In, or , has a complex factor common to all three components and

another complex factor that is different for the three components. It is the

latter set of factors that the chart refers to, and when the plus and minus

terms are added, the sums of those factors are all real numbers. Hence, the

plane-wave fields from the slots are all plane-polarized. The ground-reflection

will not change this, since the ground is also a reciprocal medium.

The same arguments apply to the summations [(4.48b) + (4.48c)],

[(4.48d) + (4.48e)), [(4.49c) + (4.49d)] and [(4.49e) + (4.49f)], since these

are only special cases of those summations discussed above.

Note that the corresponding factors in the field components with subscript o

[as evidenced by Eqs. (4.47a,b), (4.48a) and (4.49a,b)] are all real numbers.

We will now summarize the steps required to implement the calculations

described in this section on the computer.

A. Feed in the variables xA, YA' ZA, Xs1 YS, ZS, Oat Oat 9b' *b and

(Eixl Ey, Eiz ), the components of the spectral field of the plane wave incident

on the scatterer, from the main program to a subprogram to be called Subroutine

BIS ("Barber Input Subroutine").

B. Compute xG and YG from Eqs. (6.20e,f) (repeated and renumbered for

convenience):

XG = zA + xS ZA (6.35a)

A Z + zS

-YG =  zA + YS zA (6.35b)
zA' ZAZS
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C. Using xG and YGfronm Step B, compute the following quantities [see

the definitions below Eq. (6.22d)]:

PSA - /(xA -xS)2 + (Y _ YS2 (6.36a)

1S = an ' A - S(6.36b)

~S } x S)2 + - 5
2 (6. 36c)

4S 8ta- G -YS) (6. 36d)
xG - xS

D. Using the results of A, B, and C, compute cos (O) and sin (O from

G G
Eqs. (6.22a,b,c,d) (repeated and renumbered):

Co (JdA P SA COS a COS (0 - OAS)_- (N - zS) sine a

I/PSA Cos e, Cos (0 - AS) - (zA - zS) sin e8aJ2 + IPSA sin (,- A)2

(6.37a)

sin (OA = PSA sin 00- OAS) i 0 A)3

IEPSA Cos ecos (0 O AS) - (ZA~ -zS) sin 68)] + IPSA (.-

* f (6.37b)
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COS (OJ)G PSG COS 6 COS -%s) + zS sin e

C][PsG c s cos (4 - OGS) + zs sin e ]2 + (PSG sin ( -#S)] 2

(6.37c)

sin (0J)G - SG sin ( GS)

];sG os cos (6- *Gs) + Zs sin 6a]2 + [PSG sin ( O "GS
)

-
2

(6.37d)

where

P = 4"(XA XS) 2 + (YA YS)2

OSA tan- ( Y- YS" XA -xs )

E. From the results of A, B, C, and D, compute (0 )A from Eqs. (6.25a,b)

repeated and renumbered):

- (aCos- sin e {-Cos (OJ)Acos b s Cos sn Cos CO 0

.sin csJ)A (sn sb sin sib 00))

(equivalently) sin-1 ( sOn c)s

+ sin (OJ)A[cos ab sin e - sin eb cos e CoS (Ob " )  (6.38a)
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where cos (JAand sin (A are given by Eqs. (6.22a) and (6.22b) respectively,

*and sin apis obtainable from Eq. (6.23c)'.

)G-cos sin e {-cos (fJ)G[O 8b if88-sin eb cose os0,,)

+ Si ( ) (sin Ob sin ~

(equivalently) si-l {Cs(1snesn(b-0)

sn sin {C05 (J)Gsn 8b (b

+ sin (sJ)G~cos eb sine8, - sin eb Cos S Cos COS b - 081) (6.38b)

where cos (OGand sin (A are given by Eqs. (6.22c) and (6.22d) respectively,

and sin e pis obtainable from Eq. (6.23c0'.

F. Compute [from Eq. (6.33) , repeated and renumbered) the amplitude of

the plane-wave incident on the scatterer:

* ii -)/IixI 2 + Ijiy 2 + Ii~ (6.39)

G. Compute [from Eq. (6.34, repeated and renumbered) the phase of the

incident wave for both scattering process (antenna-directed and ground-

directed):
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-~ YL ](A),(G)
(A),(G) [tan- ( -. ) J(6.40)

IEIxI

where the arguments are chosen in accordance with the "lab system" defined

for each scattering process.

H. Transfer the results ep, (0p)A' (OP)G. i' (00A and (*i)G into

the Barber scattering program.

'4"-3
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7. THE BARBER SCATTERING PROGRAM

It was decided early in this project to use, if possible, a scattering

program that was already developed as opposed to generating a new one. This

seemed sensible in view of the time limitations of this project and the ex-

tensive research that has been done on electromagnetic scattering during the

past 30 years. It might have required virtually all the project time and

effort available to develop a suitable computer program to treat electro-

magnetic scattering from an object designed to simulate a human frame target.

If such a program had already been developed and was available, it would seem

that we should use it.

Hence, early in the project an extensive literature search was done on

electromagnetic scattering at radio frequencies. The bibliography resulting

from that search is included in the list of references at the end of this

D-1 through D-35
report.

In the process of conducting the literature search, it was found that

virtually all the scattering theory done by previous workers had severe limni-

tations when one considers scattering from a live human body. The theory can

only be done rigorously for uniform or layered spheres, uniform or layered

infinite circular cylinders (not finite cylinders), and with considerably more

* difficulty for uniform or layered ellipsoids or uniform or layered cylinders

with elliptical cross-section. When scatterer dimensions are very small com-

pared with wavelength (or more precisely, whenl,< 1, where d is the largest

scatterer dimension and X is the wavelength in the scatterer material) whatever

series of special functions are to be used (e.g., spherical or cylindrical

vector wave functions in the cases of spheres and cylinders, respectively) A-1

require fewer terms for a given level of accuracy. In implementing scattering
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problems on a computer, even for these simple tractable shapes, it is highly

desirable that the scatterers be (a) of uniform constitutive parameters, as

opposed to being layered, which although theoretically tractable always in-

volves more computer time; (b) either perfectly conducting (complex dielectric

constant a pure imaginary) or perfectly dielectric (complex dielectric constant

purely real), also resulting in a smaller expenditure of computing time; (c)

very small or very large dimension compared with wavelength, allowing the use

of fewer terms in the appropriate series in the former case (as remarked above)

or the use of physical optics approximations in the latter case. Either of

these two extremes simplifies the computations and thereby saves computer time.

Unfortunately, none of the simplifications above are necessarily applicable

to human frame targets within the frequency range of interest. Wavelength in

free space (N ) for our frequency range of 50 to 500MHz ranges from 0.6 to 6

meters. Considering 2 meters as d, the largest dimension of a human frame
2nd

target, the parameter ( -Lr ranges from about 2 at 50MHz to about 20 at
X0

5004z. If we consider where X is the wavelength in the medium of which

the scatterer is composed, we must correct these numbers by a multiplicative

factor of

cs W j Cs c
0 0

ecs being the permittivity of the scatterer, and as is the conductivity of

the scatterer. Suppose we use values s = 20 and as = 1 mho/meter, whichcss
were close to the values used in our computer program, based on Reference

D-34.

The correction factor would range from about 5 at 500MHz to about 20 at

50MHz. Thus the parameter 27.d referred to the scatterer material rather
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than free space, is somewhere between roughly 40 at 5014Hz and roughly 100 at

50014Hz. These numbers are well above unity but not necessarily large enough
to allow the use of physical optics approximations. They are certainly not

small enough to allow the use of highly truncated series of harmonic functions

and, in fact, require large numbers of terms for convergence of these series.

Also, human targets cannot be modelled as perfect conductors or perfect di-

electrics at these frequencies, which again brings the problem into the domain

of more computer-intensive scattering problems. A sphere or circular cylinder

is an extremely crude model of a human body. An ellipsoid would be a much

better model, but again it would be desirable from a computer-time viewpoint

to have some symnetry in the scatterer; nence, a good compromise between

analytical simplicity and realism is a spheroid, particularly a prolate spheroid.

As a part of the literature search, the bioengineering literature on

absorption and scattering of electromagnetic waves by biological objects was

p -ethrughd-3 Bioengineers are primarily interested in absorption

rather than scattering, but the boundary value problem they must attack to

determine the absorption also contains the mathematical machinery to determine

the scattering from the body. Hence, a particular piece of work done by Pro-

fessor Peter Barber of the Bioengineering Department at the University of Utah

in Salt Lake City appeared to be highly applicable to the problem of interest

D-29
on this project.

Barber had authored or co-authored a number of papers on tnis work and

had developed a very extensive computer program to implement the analytical

solutions.?1,-7D1,-2D2,-9D3,-2D3 The program had been

* used on a number of problems of Interest to bioengineers over a period of about

five years and had been thoroughly "debugged." It had been used by others on

different computer facilities and had produced reliable results. It seemed



that the best procedure for us would be to ask Barber for his program cards

and adapt the program to Northeastern's VAX. All of this was done, as indicated

in the quarterly status reports on this project, and Professor Barber's scat-

tering program was adapted to the VAX and implemented as a subroutine in our

overall program. It is called "Subroutine BARBER."

The details of the theory behind this scattering program are given in

Barber's papers, particularly References D-13, 0-17, D-19, D-22, D-29.

It is based on an integral equation technique called the "Extended Boundary

Condition Method" (EBCM).

Following a development due to Waterman, 4 the incident and scattered

electric fields at position r = (r, e, *) are expanded in a series of spherical

vector wave functions as follows (using some of Barber's notation):

E 1(r) 0 [ ~ a~ M(kr) + b 9l(kr)] (7.1a)

E(r)= 4D(f R3(kr) + g 3 (kr)] (7.1b)
- I ~ val VV V * VV-

where superscripts i and s refer to "incident" and "reflected", respectively,

where 9 IT 193, 3 are vector wave functions, superscripts I and 3 referring
V 1V V

to particular classifications of these wave functions (e.g., 3 refers to radi-

ation fields, i.e., Hankel function expansions), k being the propagation

constant in the ambient medium, v being a combined index incorporating spheri-

cal harmonic indices, and D being a normalization constant. The constants a

and b are assumed known for a specified incident wave. The task of solving

for the scattered wave field is that of evaluating the unknown constants f

and gv"
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The method is valid for any homogeneous, linear, isotropic scatterer,

and has also been extended to include layered scatterers each of whose layers

is homogeneous, linear and isotropic. The technique lends itself most readily

to scattering from spherical objects but can be used to treat objects of

arbitrary shape.

The scattering object is completely surrounded by a sphere whose diameter

is the largest dimension of the object itself. If the fields on the surface

of the sphere are known, then the Kirchhoff-Huyghens integral equation [see

Appendix I, Eqs. (I.3a,b) or (I.6a,b)] can be used to determine the fields

outside the sphere. To relate the fields on that sphere (a knowledge of which

is tantamount to solution of the scattering problem) to the boundary conditions

on the bounding surface of the nonspherical scattering object itself, an

analytic continuation process is used. Through the Kirchhoff-Huyghens integral

equation, the expansions in Eqs. (7.1a,b) and the application of the boundary
I--

conditions on the scatterer's surface, a set of matrix equations are developed

from which the coefficients f and gV, and hence the scattered fields, may be

determined.

Further details on the basic theory behind the EBCM is explained quite

D-4
thoroughly in Waterman's 1971 paper, in which he also references a great deal

of previous work on this and related techniques for solving scattering problems.

Barber's principle contribution was to apply that theory to the development of

computer programs that can handle a wide range of difficult scattering problems

and the application of the theory, via those programs, to problems involving

biological scatterers. The particular scatterer to which we have applied his

program is a homogeneous, linear, isotropic prolate spheroid designed to simu-

late a human being.

It should be mentioned that another analytical method of treating scattering
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from a human frame target, together with a computer program to implement the

method, was developed by Barber and one of his Ph.D. students, Mark Hagmann.

This work is presented in Hagmann's Ph.D. thesis, Reference D-31 on our

reference list.

Professor Barber gave the writer a copy of this dissertation for possible

use on the project. The method treats a human body as an electromagnetic scat-

terer in a much more accurate way than does the theory that we actually used.

Head, torso and limbs are each modelled and scattering processes from all of

these parts and interactions between them are considered. The unfortunate

aspect of this work from our point of view is that it is an almost completely

numerical technique and is much more computer-intensive than the method we have

actually used. An attempt to use this technique would probably have exhausted

our computation resources before we could have obtained any significant results.

For this reason, we decided upon the simpler, more analytical method, wherein

* j the "human" scatterer is modelled in a somewhat crude manner, but the amount

of computer time required to determine a point is large but still reasonable.

I
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8. SCATTERED FIELDS-COORDINATE TRANSFORMATION

AT OUTPUT OF SCATTERING PROCESS

The scattered field, as produced by the Barber scattering program, is

measured along the (xL - yL) plane in the lab frame. This is illustrated

in Figure 8.1. The scattering angle eSL is the polar angle of !S, the wave

propagation vector for the scattered wave, measured in the lab frame. (Note

again that !S is entirely unrelated to

The Barber scattering program yields as its output the "vertically

polarized" and "horizontally polarized" components of the plane-wave field

scattered in the eS direction. The former, denoted by ESV, is the component

normal to the (xL - zL) plane, and the latter, denoted by ESH, is the compo-

nent parallel to the (xL - yL) plane. From Esv and ESH, we can determine the

lab frame components of the scattered field. We must then find the ground

frame components of the field. The procedure for accomplishing this will be

described below.

From Eqs. (6.26) and (6.18a,b) applied to in lieu of E

[&)T[ 3EL][ (8.1)

where

[E~o)] i Esy iEL)) = j iy
SEszj [E z

Taking the transpose of both sides of Eq. (8.1) and noting again that

[MoL3T = EMLoJ, we obtain

8-1
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Figure 8-1. Scattered field
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* (M ~(L~j(8.2)

In longhand [iiam the matrix definitions (6.17a,b)']

ESx (Cos 88 cos .8 cos *d " sin 88 sin .j) ESX L

- (cos 68 Cos 0 sin + sin 8 cos *0 1 SYL + (sin B cos OB) ESzL
(8.2a)'

ESy = (cos e, sin 0 cos OJ + cos 0$ sin 0 1 ESx L

- (cos e sin 0 sin - cos cB Cos j) SYL + (sin B sin 0) ESz L

(8.2b)'

ESz= -(sin e cos 0O) ESx + (sin 0 sin j Esy + (cos eB) ESzL
(8.2c)'

The angle 8SL (see Figure 8.1) is the polar angle of the vector 8 as

measured in the lab frame. It is evident from Figure (8.1) that

ESx L = ESH COS 
8SL (8.3a)

Esy L a ESV (8.3b)

ES = -ESG sin eSL (8.3c)
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and hence, from Eqs. (8.2a,bc)' and (8.3a,bc)

(A) (A)
(G = [(cos 68 cos C cos sin ( C )

G G

(sin e Cos cp8 sin e G8 G JE

(A)

(A))

-[Ccos s sin ( + sin CO COS (0 COSjA ) 84S)

G G

(A) (A)

S[(Csa sin i (G)
) [cos 8 sin 8 sin o J)A + O cos CS s Jn () A ) cos SL

G G

(A) (A)

= -(sin e sin s ) sin ((G)cos )se(G)

(A)

(Cos 88 sin sin (J )A)- Cos 0 -(G) (8.4b)
G G

--i~~~i (G) (_[(sin 9Bcs(jA cos B(G)  " (cos 6 ) si 
(G )  -[(G)

G

,. , (A)

+[sin eB sin (0j A  i(G) (8.4c)
0 J A Sv

, G

~where subscripts and superscripts (A) and (G) in Eq. (8.4a,b,c) correspond to

A and G scattering processes, respectively, and where cos (¢0)A , sin (OJ)A ,
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cos (0J)G and sin (OJ)G are obtained from Eqs. (6.22a,b,c and d) respectively.

Confining attention in what follows to the A scattering process, it remains

to evaluate cos ASL and sin (A)SL  Since !SA (parallel to :SA ) is in the

(xL - zL) plane, the lab-frame azimuthal angle *SL = 0 or 7r. It follows from

the transformation between spherical and rectangular coordinates that (since

the antenna lives in the xL - ZL) plane)

o(A) ZLA (8.5a)
COS eSL = rSA (.a

SL =S_

sin (A) (8.5b)

where

rSA = J(XA" XS)2 + (YA YS)2 + (zA ZS)2

and where XLAI YLA' ZLA are the lab-frame coordinates of the antenna. (Noting

that the lab frame has its origin at the scatterer center, it follows that

xLSYLS = zLS = 0. Also, since the antenna is in the (xL - zL) plane, we

know that YLA = 0.)

From Eq. (6.16a) applied at the antenna position

XLA = [cos e, cos 0. cos (Oh - sin 0, sin (OJ)A](xA - xS )

, + [cos %6 sin 0, cos (OA + cos 0, sin (OJ)A](YA -YS
)

...sin 8 a Cos (OdAII .. - ZS) (8.6a)

8-5
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YLA -[cos a a S c s n ( sin + sin 8 cos (OJ)A](XA - XS)

- (cos e8 sin *s sin (OJ)A - Cos 08 Cos (J)A(YA - YS)

+ (sin e0 sin (0J)A](ZA - zS ) a 0 (8.6b)

ZLA * (sin 08 cos 0B)(xA - xS ) + (sin a, sin 00)(YA -YS )

+ (cos e )(zz - Zs ) (8.6c)

We will now summarize the procedures required to transform the output of

the Barber scattering program into the basic (x, y, z) coordinate system.
(A) The complex field components -(A) and (A)re

ESH and reextracted from the

output of the Barber program. These are respectively the "horizontally" and

"vertically" polarized scattered fields in the direction of the antenna in

response to the incident plane-wave with propagation vector k 8. These field

components are fed from the Barber program into a subprogram which we call

Subroutine BOS ("Barber Output Subprogram"). The variables xA, YA' ZA. XS,

YS' ZS, 6 and 0 are read into the BOS from the main program

(B) The following computations are made [introduced below Eq. (6.22d)]:

4SA b(xA - xS)2 + - yS) 2  (8.7a)

-SA YA - YS

-tan XA -XS) (8.7b)
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rSA P(A - xS)+ (Y - (ZA -ZS)(.c

(C) Using the results of (B), cos (A and sin (OJA are computed from

Eqs. (6.22a,b) (repeated and renumbered below for convenience):

COS OdA SA cos 0,Cos (0B- OAS) - (zA - ZS) sin e6S

APS CO 68 Cos (0 OAS N - zA S) sin e, j2 +IS si (0 - oA)]2

(8.8Ba)

si (OJ)A -SA sinf (0-OS 2

JtPSA cos 68 Cos (0 - OAS) - zA -ZS) sin + IPSA sin (0, - OAS)J

(8.8Sb)

(D) Using the results of (B) and (C), xLA, YLA and Z LA are computed from

Eqs. (8.6a,b,c) (repeated and renumbered below). Note that Eq. (8.6b) is not

needed in the computation, since YLA is known to be zero.

X LA [ Cos 68 aCos OBCos (OA sin 08 sin (OJ)A)(xA -xS)

[ Cos 6e sin 08 cos (OJ)A + cos 08 sin (OJ)A)(YA Y S)

-[sin 8 0Cos ('tJ)A)(zA -ZS) (8.9a)
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YLA -[Cos a Cos sin (OdA + sin Oa cos (¢J)A](XA - XS)

C- cos 08 sin 0 8 sin (OA - Cos Cos (AY -YS )

+ (sin 88 sin (OJ)A](ZA - ZS) - 0 (8.9b)

ZLA = (sin 08 cos B)(xA - xS) + (sin 80 sin *O)(YA -YS )

(8.9c)

+ (cos eB)(zA - ZS) (8.9c)

(E) From the results of (A), (B), (C), and (D), cos o(A) and sin SLA)

8SL SLA

are computed from Eqs. (8.5a,b) (repeated and renumbered here):

cos 6(A)  ZLA (8.10a)SL rSA

sin a(A) - IXLAI (8.1Ob)
0SL rSA

(F) From the results of (A), (B), (C), (D) and (E), compute E ), (A)

and j(A) from Eqs. (8.4a,b,c) (repeated and renumbered here):Sz

-(A) [(cos c - sin C sin cos O(A)

Cos OB OS( A - si 0i O)) SL

(A), ;(A)
(sin 0 cos Od sin (A)sL SH

[cos e0 cos 08 sin (OJ)A + sin 08 cos (OJ)A) ( (8.11a)

8-8
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1 (A) U [(cos e8 sin *r cos A + COS *0 sin cos e AL

- (sin 8 sin sin e G E(AsH

- [cos e sin 0, sin (OJ)A - Cos Cos JA (8.11b)

j(A) = [-(sin 6 cos cos (A )  (cos e,) sin (A) (A)
Sz B 8 Co O 6A LSL 3 SH

G

+ [sin e$ sin (¢j)A IAsv (8.11c)

(G) Return the results of (F) to the main program.

18 9
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9. EFFECT OF GROUND REFLECTIONS

ON THE SCATTERED FIELD

In this section, we will evaluate the effect of ground reflections on

the scattered field at the antenna. We will also discuss the procedures for

implementing these calculations on the computer.

The calculations to be performed to obtain this term in the total field

can be divided into two phases, as follows:

Phase 1: Calculation of the field of the plane-wave scattered from the

body toward the ground reflection point G.

Phase 2: Calculation of the plane-wave reflected from G and propagating

toward the antenna A.

Phase 1 of these procedures begins with Eqs. (8.4a,b,c) with superscripts

and subscripts G rather than A. This step is followed by the equivalent of

Eqs. (8.5a,b) with G substituted for A, i.e.,

cos 9(G ) = -zLG (9.1a)

SL rSG

sin -(G) =xLG (9.1b)SL rSG

We note that, in this case

rSG x J(xG " xS)2 (YG YS)2 + (ZG Zs)2 (9.2)

and (from Eqs. (6.20ef,g)]
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ZL

*A

-GA

G - Ground reflection point

A - Antenna

Figure 9-1. Ground-reflected Scattered Field
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* z
XG  XS ZS+ Z (xA  XS)  (9.2a)'

SzA

YG - YS = ZS ZA YS)  (9.2b)'

ZG - Z = -zs  (9.2c)'

From Eqs. (9.2a,b,c)'

Zs _S )2+ S2+S2

SG = ( S ) J(XA xs Y S)2 + (ZA . ZS) 2  (9.3)

It will be recognized that rSG as given by Eq. (9.3) is, except for the

factor zs/(zS + ZA), the distance from the "image" of the scatterer center, lo-

cated at (xS, yS, "zs), to the antenna. The factor zs/(zs + ZA) implies, as

supported by our intuition, that if zS = ZA, then rSG is one-half of the

image-to-antenna separation distance. If zS >> zA, then rSG is the image-to-

antenna separation distance, and if ZS<< ZA, then rSG is the separation

distance multiplied by the ratio of scatterer center height to antenna height.

The lab frame coordinates of the ground-reflection point G, (XLG, YLG' ZLG)'

are calculated from equations analogous to Eqs. (8.6a,b,c), where (Oj)G replaces

(J)A and coordinates (xG, YG' ZG) replace (xA, YA' ZA)"

We will now summarize the steps required to implement these calculations

on the computer. The steps A through G below are analogous to signs A through

G in Section 8.

A. The complex field components E(G) and (G) are extracted from theSH SV aeetatdfo h

output of the Barber program. These components are analogous to E(A)
SH
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Esv where the scattering process G (scatterer to ground reflection

point) replaces the process A (scatterer to antenna). These components

are fed from the Barber program into subroutine BOS (see Step A in the

sumary in Section 8). It was indicated in Section 8 that vari-

ables xA1 YA' ZA. x5, Y5, ZS, 00 and 6 are read into BOS form the main

program. Also v, the complex refractive index of the ground, is read

into BOS from the main program.

B. The following computations are made: [analogous to Eqs. (8.7a,b,c)

where xG. YG' zG replace xA, YA' zA]. (with the aid of Eqs. (9.2a,b,c)']

SG uAxG + x5) yG Y~) zS + A SA (.a

tan -1 YG ~ 2 S (9.4b)

[Eq. (9.3) repeated and renumbered]

rS u ~ Z'SX -xS) 2 + -)2 + (zZA+z) (9.4c)

C. Using the results of B, cos A and sin (JGare computed from

Eqs. (6.22c,d) (repeated and renumbered below):

Cos (OG SG COS cos ( - OGS) + zSsin e

11PSG cos 0,cos ( GS - ~ +zS sin e 81 + [PSG sin (0 -~

(9. 5a)
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I ,sin (o) SG sin (0, - sin )

IISG COS 8 8 Cos (0 B GS) + Z S sin 6j 81 + 2PGsn( G)

where

PSG 7 X s)2 + -y Y2

OG tn1 Y YStan -1 Y -Y
~XG XGXS 1 A ( S

D. Using the results of B and C, x LG. YLG and z LG are computed from

equations equivalent to Eqs. (8.6a,b,c) where xGI YG ZG and O)

replace XA, YA' ZA and (OJ)A' respectively (As is the case with the

antenna, the ground-reflection point G is in the (x L - ZL) plane;

hence, we know that YLG = 0 and we don't need Eq. (9.6b) in the comn-

4 putations).

XLG = [Cos 6 aCos O cos (JG- sin ,sin ( J)G(X - xS)

+ [Cos 88a sin 0,cos (O G+ Cos *8B sin (JGY -YS

+ [sinl e cos (OJ)G] ZS (9. 6a)

YLG = [Cos e88 Cos a sin (A + sin 0,cos (OJ)G)(xG -XS)

[ Cos 886 sin *8 sin -O) cos 08 cos -)]Y YS)
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-[sin 8 8 sin (O)G ZS *0 (9.6b)

ZLG =(sine8 co CO 0)(XG - XS) + (sine -i 8)Y S

-(Cos 88) ZS (9.6c)

E. From the results of A, B, C, and 0i, cos 8(G) an (G) aecmue
SL an SL aecmue

from Eqs. (9.la,b) (repeated and renumbered below):

Cos O(G) =zLG (9. 7a)SL rSG

(G) IxLGIsin8 OS (9. 7b)
rSG

F. From the results of A, B, C, D, and E, compute, (G) -(G) an (G)
ESx , y ,dESz

from Eqs. (8.4a,b,c) (repeated and renumbered below):

x [(cos 88 Cos 08 COS (OJ)G-si *8 sin cos eSL

-(sin a8 cos 00) sin e(G)] E(

-[Cos 8a Cos 08 sin (J)G + sin ocos (OJ)G1 ESY 9.

Sy)* (os8 sin 08Cos (OA)G+cos 08 sin (O))Cos S

-(sin e8 sin 0,) sin e(G~j i(
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- (Cos eB sin sin ( CJ)Gcos s j (G) (9.8b)

(G) [-(sicos(G)_ (cos e ) sin e(G)3 E(G)Gsz , -sne cos (Ca)G) cos OSL a SL SH

+ [sin eB sin (0 E(G) (9.8c)

G. Return the results of F to the main program, in which the remaining

part of the computation, Phase 2, is performed.

To continue with Phase 2, we must calculate the fields of the ground-

reflected plane-wave due to the scattering process. To this end, we invoke

equations analogous to Eqs. (5.18a) and (5.19), but in a different context.

Equations (5.18a) and (5.19) contain the (x, y, z) comoonents of the

vectors and a-. The analog of 6" in the present development is a vector

S which we will rename !, and which is the unit vector parallel to a vector

originating at the scatterer center and terminating at the ground-reflection

point G. The analog of , which will be called 4, is the unit vector parallel

to a vector originating at G and terminating at the antenna A. It is easily

deduced from these definitions that (where vectors rSG and rGA) 8 and + are

illustrated in Figure 9.1.

(xG - xS)+ (yG YS) - 2~S

(9.9a)

and

9-7



+ X8+ Y+ Z + rGA ~(A -xG)+ .(A Y)+^ZA
O~S S.Sy Sz rGA J~Ax) 2 +(y-) 2 + Z2

(9.9b)

We invoke Eqs. (9.2a,b,c)' and (9.4c), and recognize that (using Eq. (6.20e,f)],

similar relationships can be derived for xA -XG and yA-

xA -xG ZA+ x -xS (9.10Oa)

ZAZ

ZAYG(A S (9.10Ob)

y5) (A2 + 7ZA +Z J(xA -Y x5) + - 2 + (A+ z)(9.100)

We now invoke the analog of Eq. (5.18a) in a form suitable for the present

discussion:

[ji( GA) = (A R(G ) R(A i(G[)G]~G

Sy E21 E22 E2.3 Sy

Sz LE31 E32 "E33. LE5z

where the elements of [AG) (whose propagation vector is k a~ are given by

Eqs. (9.8a,b,c), where EGA)] (whose propagation vector is k0  ) is the field

of the plane-wave due to the scattering process propagating toward the antenna

after ground-reflection and where the elements of LEG) retesmea hs

-in Eq. (5.19) except that 8,x. 8y , O~ h and -yzare replaced by SSx' OSy' SSz'
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8Sh and ySz' respectively.

We can now return to the summary of steps in programing of the calcu-

lations. The steps in implementation of Phase 2, continuing after Step G, are

as follows:

H. Compute the following variables which will be needed in subsequent

computations [from Eqs. (9.9a,b) and (9.lOa,b,c)]

z

ZA +Z (XA " s)2 + (YA "-S + (ZA + Zs) 2  (9.12a)

zS  (xA - xS)

8: (z z S (9.12c)
8S zS + A rSG

By z) (9.12c)

-Z -

rSG Sh

" ZA A ( -xS) (9.12f)+ ZA~ + xA - SI: i B~Sx -' 7 s A )  rGA .1f

iz

0+ , A (YA - YS) (91)

Sy ZS zA rGA
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'i8 h J(e' ) + (es') (9.12h)

+ Z + Ji (~ ~(9.121)

1v2z -Oh)

+rs = - (9.12k)

I. Using the comnputations of E(G), i(G) and g(G) promdin F and
thevarabes omute i Sy Szpefrd

thevarabls omptedinH as inputs to this step, compute CiEGA)J

__ through the matrix equation in Eq. (9.11) (repeated and renumbered)

lE(A)) [ RGA)GJ (9.13)

* where

EJKA C 0  A (GA)

EJ 0Sx, Sy REJK

C (0s )2 - (*I ) 2 - 1OIB~I
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~(GA) * IGA) 2B &E12 "E21 " Sx Sy

^2(GA). (0+ )2 " Bx2 + +~z s

-(GA) (, + +
E33 =  h "1Zsl sz

^(GA) =(GA) =(GA) =GA) -

El3  RE23 E31 R E32  0
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10. TOTAL SPECTRAL FIELD AT THE OBSERVATION POINT

AND ITS INVERSE FOURIER TRANSFORM

The plane-wave spectrum of the x, y, and z components of the total

electric field at the observation point (receiving antenna position) is the

end result of the calculations described in the previous sections.

Referring back to Section 2, the plane-wave spectrum of the electric

field is the superposition of those of four fields, as follows:

(1) The contribution from the cable slots as if the cable were in free

space (the sum of the fields from all the slots, neglecting the

effect of the ground). The individual slot fields are denoted by

in Section 2. The calculation of these fields is described

in Section 4.

(2) The contribution resulting from ground reflection of the plane-wave

spectrum of the field resulting from excitation of the slots, which

is denoted by Eb)h) in Section 2 and whose calculation is described

in Section 2.

(3) The contribution due to scattering from the target directly toward

the antenna of the superposition of direct and ground-reflected plane-

wave fields [i.e., E(a)(0h) + E(b)(ah)], which is denoted by E(c)()

in Section 2 and whose calculation is described in Sections 6, 7,

and 8. -

(4) The contribution due to ground reflection of the scattered field,

which is denoted by E(d)($h) in Section 2 and whose calculation is

is described in Section 9.

The final step in the analysis is a two-dimensional Fourier transformation

which transforms the spectral field components, which are functions of Qh, into
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actual field components which are functions of position.

In what follows we will consider this problem in a generic sense. Con-

sider a spectral field component denoted by N(Bh). We would like to perform

a double Fourier transform to convert this into a field component E(r), where

r = (x,y,z) = arbitrary point in space.

The transformation equation is (see Appendix III)

j kk e P
E(r) 0 (-2-a-- d2  0.e h E(h) (10.1)

We now convert both r and a to polar coordinates, i.e.,

r - p(i cos * + y sin ) + 'iz (10.2)

where

p= 2 + y7 , =tan-' ( )

Also:

Sa h(^X cos 0 + sin ) + z (10.3)

where

a h -Jf + y ; tan" (!I); oz- 0 z, z( -1 1  -7

We express E(Bh) as a function of 08 and Ohl i.e., we rename the function

arguments as follows:
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(h) *(B,.)(10.4)

From Eqs. (10. 1), (10.2), (10.3), and (10.4), we can write

j k o 2 1 j27r

-E*-) jTT d a h d BE(shsO)
0 0

-e *kphcso8 ) e j zFah(10.5)

which reflects the fact that 5h

We could now invoke the well-known Bessel function relationship

ejxsine (x ie(10.6)
n=-8 ~

which, when applied to Eq. (10..5), would result in the expression

jko 2 (no ef(T12))E~r) --f-) e d 6 hJn(koP h
0

21T -jk zJF-7 , JnO
-J d *0 E(Shl 08 e h e (10.7)

0

Equation (10.7) is perfectly satisfactory from an analytical viewpoint,

but preliminary investigation shows that it would be prohibitively time-

consuming to implement on the computer. As an alternative technique, we write

the *0 integral as:
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whor'e

Recognizing that the function

F(qs ; p, ,( ) - ' 4' + ) (10.9)

can be expanded in an expo,ential Fourier series in we write

FN¢; p, @, Qh =  c C(f), q ;;{ e n ' (Il)

It follows from Eqs. (10.8), (10.9), and (10.10) that

00r jn )t
I y = - C (P, ; rh)J d e = 21f c0(, O h  (10.11)

0

where we note that

c (P, J-' d Ot3E(0' (10.12)
0h 21 + e '

0

It follows in turn from Eq. (10.11) that Eq. (10.5) can be expressed in the

form

0j ko ) 2  1 Jkozl-h

E(r) - d ( h h Co (P, ) (10.13)

0

The evaluation of c( p , ; through Eq. (10.12) and the subsequent
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evaluation of E(r) through Eq. (10.13) are accomplished numerically. Un-

fortunately, for high accuracy these computations require a very large amount

of computer time, particularly that of Eq. (10.12).

In the inverse Fourier transformation of the spectral fields

[E(a)(q) + E(b)(O )] of Section 2, i.e., those that exist in the absence of

the scatterer, the point in space at which the fields are to be evaluated is

the antenna location. In the coordinate system used in our problem, the

antenna (coordinates xA, YA' ZAP such that p = PA z = zA) is

located near the point x 0 0, y = 0. For that reason, the exponent in

e is not necessarily large in those calculations. In fact, it

is zero if the antenna is placed exactly at the origin. Even if it were

assumed that the factor E(8h, 08' + 0) on the RHS of Eq. (10.9) is "slowly

varying" in the angle 0 (which would seem to be a justifiable assumption be-

cause of the near-symmetry of the circular cable ("near" because of the cable

attenuation; without that attenuation the same amount of energy would be

leaking out of all the slots in the cable. The attenuation around the cable

is sufficiently small so that the distribution of energy from different slots

is quite close to uniform) the stationary phase method or some variation there-

of would not be easy to justify. Hence, the full numerical integration tech-

nique is used in the evaluation of the field components in the absence of the

scatterer.

In the case of the superposition of the direct scattered field and the

ground-reflected scattered field, [(t(c)(,h) + t(d)(Bh) ] in Section 2, Ne

Fourier transformation is taken at the center of the scatterer, which is

located near the cable. Hence, in this case

P Ps I + Y S, R + , where ISR! << R (10.14)

10-5

I !> I~



The factor (k0 Ps Bh) in the exponent in Eq. (10.12) is large enough to

justify a stationary phase approximation provided Sh is at least as large as

0.01 and provided we can assume that E($h , *p + 0) is "slowly varying" in o .

There is marginal justification for this assumption in this case, since the

scattered field may be significantly variable with 0 . However, it is still

likely that it does not vary in a highly oscillatory fashion with 0 and that

the factor multiplying e osh B is still "slowly varying" compared with

that exponential factor. Hence, the stationary phase method, based on the

assumption that the integrand consists of a slowly varying factor and a highly

oscillatory exponential factor will be invoked to approximate the 0 integral.

The major contribution, in this case, comes from the stationary phase points.

Because of time and financial limitations in the execution of this project,

it is not possible to carry out an extensive study to determine the validity

of the stationary phase approximation for this problem. Further studies might

dictate a full-scale numerical integration over *B' which was originally

planned. Such an integration is feasible, but preliminary studies indicate

that it would require a very large expenditure of computer time to accomplish.

Estimates indicate that this would exceed the project's resources, both

temporal and financial. As a compromise, one might consider a numerical inte-

gration over a small range of angles near 0o - 0 and n (which are the stationary

phase points) which seem intuitively to be the directions in which most of the

incident wave's energy would propagate. Even this approach would be much

more computer-time intensive than stationary phase.

Originally, we considered a FFT algorithm. After a careful perusal of the

problem, it was decided that this would not be much help because its primary

utility is in reducing the number of computation points from N2 to N log N in

computations of the discrete Fourier transform at N points. In the present
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computation, the Fourier transform is evaluated at only one point (the scat-

terer center position). A two-dimensional Fourier transformation on Bx and

is performed at that point, but because Bh ' 187 + 84 is between 0 and 1,

the polar coordinate form (rather than the rectangular coordinate form) is the

natural one, and when cast in this form, the problem reduces essentially to a

single Fourier transform-type integral, that over the angle qO' and a subse-

quent integration over ah" The latter is not necessarily a Fourier transform-

type integration, because zs is so small and might even vanish, in which case

this last step reduces to an ordinary integration problem which has nothing

whatsoever to do with Fourier transformation.

The stationary phase technique in this case involves the differentiation

of the phase ko p 8h cos 04 in Eq. (10.12) with respect to 09 and the setting

of this derivative to zero in order to find the stationary phase points.

r (cos 0) =-sin 0 = 0 , € 0 or 7 (10.15)

For 0 near zero and Bh $ 0
, k.oPohq .[(¢)/232}

eJkep(hc1s04 ei(lO.16a)

For near r and Bh  0

Tr + A , Iq << 7)

JkoPhCOSOB  -iyh{l-[(4)/2]21
e _ = kP h(-( (10.16b)

From Eqs. (l0.16a,b) and (10.12),
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c0(, 1 ~) iEh 0) ekPah d -i kop~h ( A/2) 2

+ (P E(. er+* ikPhj d(~~ e0oPh( e)

ik 8~ .2phAO/)
+~~T E( ~ h 7r e0h dxA eJX*

+ ~ it E(8h, h' +) e) el dx e(0 7

-0

But

fdx e T =2 2{jO dx cos(x 2) fdxsin( x2)} r!2(0 T )
-00 0

Substitution of Eq. (10.18) into Eq. (10.17) results in

c0(p, 0; 6h) 1 {E( Bh' ) e~(o~~

+ E( $h, I t + 0) ei Ioif a} 0 (10.19a)

if h 0, then 0 is arbitrary. Setting 0 equal to zero in Eq. (10.12), we

have

Cob 0) i(0, 0) if 6h '0 (10.19b)
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The numerical integration process is now reduced to a single rather than

a double integration. In practical computation, we must choose a small value

of 8h, which we may call 8ho, below which $h may be approximated as zero,

(this may be, for example, at sh - 0.01), i.e., Eos. (10.19a,b) may be re-

written as

c o (p , ; a h1 { ( h,Ze k _ _h_) 
e i ( k P $o h - )

0 k P h

-(koPsh- T)
+ E(h, + TO e k 0 } if Bh >ho

E(O, ) if Sh < aho (10.20)

Using Eq. (10.20) in Eq. (10.13), we obtain

(jko)2  rBho Jo~

E(r) 0k 2T {E(O, 0) f d ah ah e

*1 0

1 i(k pS -Z)

d Bh [(h, ) e oh4

Sho

-a (k pSh-') jk z~l8+ E(Oh, 0 + n) e 0e k0  h  (10.21)

But (since Sho << 1)
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vIho j1i'2 - jkozd f 1 0h .. .... -. z 0 h o 0 0 C'0

00

k z k z"  iko0 z jk z
[0 ' - e ko ] .. .. Z (10 .22)

0

S bstLituting Eq. (10.22) intu Eq. (10.21), we obtain the fiIal approxi-

ii.i c form of' E( i , i.e.,

(j k1 )2 ik 0z
E(r) . -- I(- [E

1 [ 1 d h~j KoP,,--4.. . k Th n

' o 0ho0 
h

+ E((, I + I) e e} (10.23)

The inL (jra tio on indic;. Led in Eq. (10.23) is carried out on the

Computer using a Simpson's rule alqoritho. In the case of the scattered

fields, the parametervs p and 1, are those of the scatterer center

2I .. .. Ys

x s

* In the numerical computations, only one oF the tWo terms in (10.23)
is used in aoy single computation. The first term wherein 0 = , is used
rOr scatterer position; outside the cable and the second temn

wherein . ( + it, is ut.ed for pusitions inside the cable.
This chnice is based on intuition and the knowledge that the predominant
contribittionq come frem the portion of Lhe cable near the scatterer, and

from values of the propagation vector S nearly parallel with the line-
(,F-sigjht from the source.

.f A0
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11. NUMERICAL RESULTS AND CONCLUSIONS

11.1 Computer Problems

The numerical results for a number of cases that were run on the North-

eastern University Faculty VAX are shown in Subsection 11.4. There have been

extensive computation problems due to the transition from the CDC Cyber 70

to the VAX. Among these were: overflow problems due to the reduced range of the

VAX; reprogramming required to adapt programs already running on the Cyber 70

to the new machine, thus requiring extensive debugging time; hardware errors

on the VAX which have resulted in considerable down-time; and the necessity to

use a batch processing system which severely limits the number of cases that

can be run per day.

Because of these computer transition problems, which were beyond the

control of the technical staff working on this project, there has been a delay

of several weeks in the execution of production runs on the computer.

The computations performed on this problem are quite extensive and

require considerable running time. For this reason, only a limited number of

cases were computed for presentation in this report. The computer program is

available and could be used to study many more parameter regimes that might be

of practical interest.

11.2 Program Variables

For the results presented in this report, the following variables had

fixed value ranges based on use of a specific cable configuration and some

empirically determined values of certain parameters given to us by the Contract

Monitor.

• 11-1
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Parameters associated with the cable:

Fortran Algebraic Definition Value
Name Symbol

R Radius of cable 24
configuration in (approximation
meters based on circum-

ference of 151
meters)

A a Inner radius of .00476
coaxial cable-
meters

B b Outer radius of .0127
coaxial cable-
meters

Length L Slot length (along .003
cable); same for

all slots-meters

Width WI Slot width (around .0155

cable); same for all

slots-meters

EPSILONCA E ca Permittivity of 15.05(10-12) =

cable material- 1.7c
farads/meter 0

SIGMACA a ca conductivity of 0
cable material -
mhos/meter

NSLOTS Ns  Number of slots 31,723
, I on cable

PHIBAR 010 Azimuthal angle 0
Oalong the cable

of Slot #1. (The
slot nearest the
power source) in
ground frame

PHI -- "Angle of

slot center 4 450

around periphery
of cable
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Fortran Algebraic
Name Symbol Definition Value

NMODES ---- Number of modes 1 TEM mode
of each category (quasi-TEM or

coaxial mode
observed to propa-
gate in this cable
as the principal
mode)

ALTEM an (TEM) Attenuation of .002
TEM mode-nepers/
meter

ALTEN a (TE) Attenuation of
TE mode- nepers/
meters

ALTMN a n(TM) Attenuation ofn .TMn mode-nepers/

meter

F f Radio frequency 57(106)=
in Hertz 57 MHz

ATEN A(TEn) Amplitude of TEn
mode-units not
indicated here, be-
cause this is treat-
ed as a scale fact-
or and its units
are not important

ATMN A(TMn) Amplitude of TMn
mode-same re-
marks as above
concerning
units
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Fortran Algebraic Definition Value
Name Symbol

VO V0  Voltage between
inner and outer
convectors of
coaxial cable-
used in amplitude
of TEM mode-volts

E C Permittivity of 35.416(1012)

ground-farads/ 4e
meter 0

SIGMA Ground conductivity 0.002
-mhos/meter

XAP x A x-coordinate of 0
antenna-meters (antenna at center

of circular cable
configuration)

YAP yA y-coordinate of 0
antenna-meters (same remarks

as above)

ZAP zA z-coordinate of 0.5
antenna-meters

BH Oh  Magnitude of (x-y) Varied fromplane projection 0 to I

of 8
49.

PHIB C Azimuthal angle Varied from 00
of (x-y) plane pro- to 3600
jection of s , i.e.

tan(Y
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Parameters Associated with the Scatterer

Fortran Algebraic Definition Values
Name Symbol

XSP XS x-coordinate of Varied from
scatterer center- case to case
meters

YSP YS y-coordinate of Varied
scatterer center-
meters

ZSP z S z-coordinate of Varied
scatterer center-
meters

THB 0b Spherical polar Varied:
angle of long 0 for "upright
axis of prolate
spheroidal scatterer man cases;
(in ground-frame) R- for "crawling

man" cases

PHB b Azimuthal angle Varied
of long axis of
scatterer (in
ground-frame)

ES cs  Permittivity of 408.992(10-l )

scatterer material- 462c =

farads/meter o
2/3 (60 c 0

based on
Reference D.19

SIGMAS as Conductivity of 0.592
Sscatterer material-

mhos/meter based on

Reference D.19

S (opt r2 = radial Varied
• ~ ~~(computed s + s

variable) coordinate of
scatterer center
in ground frame

PHIS Os tan-I/ys

(computed - = azimuthal Varied
variable) x s

angle of scatterer
center in ground frame
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Fortran Algebraic Definition Values
name Symbol

RS Rs  Radius of prolate 0.25
spheroidal
scatterer-meters

LS Ls Length of prolate Varied
spheroidal

scatterer-meters

4
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11.3 Delineation of Cases Studied

The outputs of the computations are:

E(q )I = amplitude of x-component of the electric field of the signal at

the antenna where q = o for the field in the absence of the scatterer, q = s for

the scattered wave field and a = (O+s) for the superposition of the field without

the scatterer and that due to the scatterer.

JE~q)j = amplitude of y component of field at antenna

JE(q)j = amplitude of z component of field at antenna

JE (q) I = Ex (q)12 + JE (q)12 + JEz(q)1
2

* The parameters to be varied in these computations are:

xs = x component of scatterer center-meters

= y component of scatterer center-meters

Ys = z component of scatterer center-meters

Ls = Long dimension of scatterer = Height of "man"-meters

ts = Height of "stilts" in cases where the intruder is assumed to be

elevated-meters

=stan (s) Azimuthal angle of scatterer center

Axs  =xs  - xc , where xc = x coordinate of cable-meters

AYs= YS - Yc where Yc = y coordinate of cable-meters

Ars = rs -- , where rs  = r coordinate of scatterer center-meters
11-7
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The first set of results which are of course the same for all scatterer positions

and orientations, are the field amplitudes of the antenna in the absence of the

scatterer. These are as follows:*

],, (o)
* JEx = -4.8166(l0"-)

IE(°)' - 2.3858(1O-2)

JE0)I = 5.0226(10")

The computed field in the absence of a scatterer is predominantly in the

y-direction. The interpretation of the result will be discussed in Subsection 11.4.6.

The cases involving an intruder are delineated below.

Cases I : "Upright Man" Model

These cases involve a model of an intruder walking in upright position across the

cable. The intruder starts at a point outside the cable and walks radially inward,

crosses the cable and continues to walk toward the center of the configuration.

Pacause of time limitations computations were made for only a few positions

on either side of the cable. Since the effects should not be entirely circularly

symmetric, due to cable attenuation and other effects, these computations were made

at four different azimuthal angles.

Case I-A

"Upright man", walking radially inward across cable; 0b = 00, *b 00. rs varied

from 28 to 17.5 meters in stpns of 1.5 meters, zsLs/2(see diaaram belnw); s= n° (i..,

path along x axis in -x direction).

* These "field amplitudes" are actually relative quantities and are not intended to
represent the actual field amplitudes. If the true values of the power generated
by the source in the cable were used here, these numbers would be true field ampli-
tudes in volts per meter.

11-8
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Case 1-A (continued)

Side View Downward View Y
intruder

Path of intruder
L -------- x

To antenna

Ground 
- --

f 17.5
Cable cross-section

m

Case I-B; same as I-A, but s = n ; path along y axis in -y direction

Downward View

yx~28 m

17.5

Case I-C, same as I-A and I-B but Os =  ; path along x axis in +x direction

Downward View Y
28 m

Path of
intruder4

x

17. 5 m
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Downward View
y

17.5 m

intruder
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Case I-D: same as I-A, I-B and I-C, but s 3- ; path along y axis in +y4

direction.

Cases II: "Elevated Upright Man" Model

In these cases the intruder is again upright, but elevated, i.e., on stilts.

The stilts are assumed to scatter no energy; hence the only change in the mathematical

model is that the scatterer center is raised (relative to Cases I) by an amount zst

the height of the stilts.

These cases are evaluated with the intruder at a few fixed positions, to

determine at those positions the effect of various elevations on the field

components seen at the antenna.

Case II-A Upright man on stilts; Ob = 00 , b 00; is Height of stilts;

z Is + Ls ; s varied from 0.4 to 2.0 meters; xs  22, Ys Z 0.

L

ss

Case II-B. Same as Case II-A but xs  23.5

Case II-C. Same as Cases 1I-A and II-B but xs  25
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Case 111: "Upright Man", standing at ground level; 0b = 00 ,b 00 , zs Ls
T

Ys = 0 ; Ls varied from 1.6 to 2.08. This case is for the purpose of

examining the variation of the field components seen at the antenna with the height

of the intruder. Case III-A, xs = 22; Case III-B, xs = 23.5; Case III-C, xs = 25.

Case IV: "Crawling man" Models

In these cases the intruder is "crawling" radially inward from a position

outside the cable to a position inside the cable. The spheroid in the model is lying

on the ground surface with the long axis pointed in the radial direction.

Case IV-A: "Crawling man", Eb = O , b = 00, Zs= R/2, 4s = 0, rs varied from 28 to2
17.5 meters in steps of 1 meter; path same as in Case IA.

'Io"inw, rd View

Scatterer

2Rs .... x4- Path

Ls
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CASE IV-B Same as Case IV-A except that b : , path same as in Case I-B.

Downward View .Pt

L s

x

Case IV-C: same as Cases IV-A and IV-B except that 4b = ; path same as

Case I-C.

Case IV-Q: same as Cases IV-A,B,C except that -n- path same as Case I-D.

b T h aea aeID

Case V: Prone Position Transverse to Radial Direction

In these cases, the intruder is in a prone position, but the long axis

is transverse to the radial direction. Otherwise, same as "crawling man" cases.

In cases V-A, V-B, V-C and V-D, 0b = 0, 1T/2 , 7T and 31T/2, respectively.

1' 11-13
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In addition to Cases I through V above, two other sets of auxiliary computations

were made. Their purpose was to determine the magnitude and polarization of the

*fields illuminating the scatterer at the positions assigned to its center in Cases I

through V.

The first set of computations were of the field components due to the cable

without ground reflections at the values of p and 0 corresponding to the scatterer

center values ps = 17.5, 19, 20.5, 22, 23.5, 25, 26.5 and 28 meters. Four sets of

these runs were made, at 0 = 00, 900, 1800 and 2700. These values of p and 0

correspond to the scatterer positions in Cases I-A, B, C, D, IV-A, B, C, D and

V-A, B, C, D.

The second set of these illuminating field computations were identical with the

first but with the inclusion of ground reflections, i.e., in the first set of

computations the ground permittivity is that of free space and the ground conductivity

is zero, those assignments being equivalent to the removal of the effect of the

ground. In the second set the values of ground permittivity and conductivity were

those indicated in the table in Section 11.2 above. Comparison of the first and

second sets of results should allow a determination of the effect of ground reflections

on the fields illuminating the scatterer.

1
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11.4 Presentation and Discussion of Numerical Results

The available numerical results will be presented in this section, beginning

with the results of the study of the fields illuminating the scatterer (Subsection

11.4-1). followed by: (Sec. 11.4-2) the "upright man" (or equivalently "radial

walk") Lasub (Ldaeu I-A, b, C, U); the "elevated upright man" or "man on stlIts"

cases (Cases II-A, B, C; Subsection 11.4-3) the height variation" cases (Cases

III-A, B, C; Subsection 11.4-4) and the "crawling man" cases (Cases IV-A. B, C. 0 and

V-A, B. C, D; Subsection 11.4-5).

In discussing the results we have tried to take cognizance of available

experimental results whenever they exist. Those experimental results mentioned in

what follows are:

Reference B.2, Figure 5, Page 10 (circumferential walk)
Figure 8, Page 13 ( .... )

Reference B.3, Figure 9, Page 15 (circumferential walk)
Figure 10, Page 16 (radial walk)
Figures 13, 15, 16, 17, Pages 18, 20, 21, 22 (circumferential walk)

Reference 8.6, Figure 7, Page 12 (c4rcumferential walk)
Figures 4, 5, 6, Pages 1, 12 (circumferential walk; analytical

results based on L. Poirier's simplified analysis neglecting
field polarization)

In all of the circumferential walk cases studied experimentally, a very sub-

stantial oscillation is observed in the results as the intruder walks around the

periphery of the cable. This is also exhibited by L. Poirier's analysis reported

in Reference B.6. Roughly speaking the oscillatory behavior is due to alternations

between constructive and destructive interference as the scattering object changes

azimuthal angle.

The experimental curves plotted in the above references are of the total

signal voltage received at the antenna vs. *sp the scatterer's azimuthal angle.

These are compared with the signal voltage in the absence of the scatterer (quiescent

level). The signal voltage (assuming, of course, that the antenna is linear) is
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proportional to the field strength of the component polarized in the direction to

which the antenna is receptive. In the case of the monopole antenna used in making

the measurements, that direction is the vertical. Hence, only our results on IEzI,

the amplitude of the vertical component of the field at the antenna, could be com-

pared with those results. The horizontal components IExI and E JyI cannot be so

compare4, since the antenna is not responsive to horizontal fields.

Two points must be made before proceeding with the numerical results. First,

*it was impractical under our time limitations to plot circumferential walks; con-

sequently all results where the scatterer moves and also those results for the fields

illuminating the scatterer at various positions are presented as "radial walks", i.e.,

the field components are presented for various radial positions ps at a fixed azimuthal

position 0s" Moreover, the angles *s are confined to 00, 900, 1800, and 2700. It

would be highly desirable to have results for many intermediate angles. There was

insufficient time to compute enough points around the cable to obtain meaningful

"circumferential walk" results. To do so would require computations for every few

degrees(e.g. 20 spacing would require 180 computations for each fixed value of ps).

For this reason it was decided to confine attention to the radial varation at fixed

azimuth angle.

A second point is that there is some question in our minds (and no remaining

time to study the question and try to improve the model to rectify the problem if it

exists) on the accuracy of the ratio of the computed scattered fields at the antenna

(i.e., direct-plus-ground-reflected scattered fields) to the computed fields at the

antenna in the absence of the scatterer (direct-plus-qround-reflected). According

to our results the fields at the antenna (at the center of the configuration;

XA YA : 0, zA = 0.5) in the absence of the scatterer are (in dB relative to an

arbitrary reference level; the same reference level used in all of the results with

and without scatterers presented in this report):

11-16
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IEXI - -66.3 dB

IE I = -32.4 dB

These results will be discussed in Subsection 11.4-6.

Certain approximations used in our analysis if not as accurate as we originally

believed, might have a different effect on the antenna fields in the absence of the

scatterer than they do on the scattered fields. If indeed that is the case, then

at the very least there might be a scale factor error in the results without the

scatterer present or alternatively a scale factor error in the scattered fields, or

possibly in both sets of fields. If that were the case, then coherent addition of

the fields with the scatterer present to the fields without the scatterer present

could produce totally meaningless results. The two important constituents of the

analysis are the fields generated by the cable and the perturbation of the field by

the scatterer. Rather than present large numbers of results on the composite fields

(all of which have been computed for each case studied) which may be greatly in

error because of an erroneous scale factor, it was decided to concentrate on the

direct-plus-ground-reflected scattered field components and show their behavior as

a function of various parameters.
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11.4.1 Numerical Results on Illuminating Fields

The first results presented are those of the field components illuminatingI the scatterer. These appear in tabular form in Tables 11.1, 11.2 and 11.3, Columns

1 through 8. Some of the results are shown graphically in the curves of Figures 11.1

through 11.16.

Results are shown both with and without the effects of ground reflections.

The format for each of the curves shown is a plot of a field component in dB

relative to an arbitrary reference level against p, the radial coordinate, from

p= 17.5 to p = 28 meters. The reference level has no significance because there

are arbitrary factors which cause the computed field component magnitude to differ

from the actual field magnitude in volts per meter. All plots in these figures

and also those in subsequent figures are in dB relative to the same reference level,

hence, it is the relative magnitudes of field strength rather than their absolute

magnitudes on which attention should be focussed. Since the cable is at a radial

distance of 24 meters, the plots may be considered to be from a distance of 6.5

* meters inside the cable to a distance of 4 meters outside the cable.

F-om very simple reasoning based on a single plane wave propagating from the

* nearest cable slot to the observation point, we would expect something close to a

decay in amplitude proportional to the inverse distance from the nearest cable slot.

The coherent addition of contributions from different parts of the cable, with the

attendant variability in the relative phase -etween contributions from different

cable slots, would preclude exact inverse distance behavior. However, we look for

some suggestion of such a variation with distance. Unfortunately we do not always

attain behavior close to the above.

Focussing for the monent on the "best" results in terms of correlation with

expectations based on simple reasoning, we examine the results in Table 11.3 and in
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Figures 11.2, 11.4, 11.7 showing the z-components of field as a function

of radial distance without ground reflection.

At # = 00, the field amplitude decays from a value of -5.31dB at a radial

*distance of 0.5 meters from the cable to a value -39dB lower at 6.5 meters inside

the cable and to a value -12dB lower at 4 meters outside the cable. The inverse

distance behavior would give us a decay of roughly -22dB at 6.5 meters inside and

-18dB at 4 meters outside. Thus the rate of decay is considerably larger than would

be dictated by an inverse distance law. This could be at least partially due to

the importance of the approximately inverse squared contribution at a distance very

close to the scatterer.

The z-field amplitudes are not changed appreciably when ground reflections

are added at 00. The z-field amplitudes are slightly smaller but within about

2 or 3dB of their corresponding values without ground rcflections and the trends

are qualitatively and quantitatively the same. Since interference between direct

and reflected waves can be either constructive or destructive, there is no

certainty that the ground reflection contribution will increase or decrease the

field magnitude. In this case, at the reflection angles at which these effects

occur, the interference appears to be mostly destructive.

At * 900 (Table 11.3 and Figures 11.9, 11.11, 11.14) the trends in the z-

field are qualitatively similar but the rates of decay with radial distance from

the cable are not as pronounced. The decay between 0.5 and 6.5 meters inside the

cable and that between 0.5 and 4 meters outside the cable are respectively 19.6dB

and 16.9dB without ground reflections and 24.1dB and 22.1dB respectively with

ground reflections. These values are much closer to the respective 22dB and 18dB

that would prevail for an inverse distance decay law.
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At € = 1800 (Table 11.3 and Figure 11.14) the decay levels

corresponding to the above comparisions are 17.3dB and 17.5dB respectively without

ground reflections and 21.9dB and 19.6dB respectively with ground reflections.

Again these values are within a few dB of what would be expected for an inverse
distance dependence. Again, as at 0 = 0°0 anL € 90 0, the z-field magnitudes with I

ground reflection tend to be slightly lower, usually by less than 2dB, than their

counterpart values without ground reflection, indicating mostly destructive inter-

ference between direct and ground reflected waves.

The z-field results for 0 = 2700 (Table 11.3) appear anomalous with respect

to the above considerations. The same comparison exists between results with and

without ground reflections (nearly the same in both cases), but there is no obvious

explanation for the strange behavior of the z-field magnitude outside the cable

and its erratic behavior inside the cable.

The variation in the average z-field amplitudes as the angle 0 changes

through 90 increments is substantial, being nearly 30dB in some cases. This is

not anomalous, since experimentally observed scattered field magnitudes (See e.g.

circumferential walk results in Ref. B.2; Fig. 5, Pg. 10; Fig. 8, Pg. 13, Ref. B.3;

Figs. 9, 13, 15, 16, 17, Pgs. 15, 18, 20, 21, 22; Ref. B.6; Fig. 7, Pg. 12) exhibit

a highly oscillatory azimuthal variation. Since nulls exist at some angles no

variation in dB would be anomalous. This can be explained at least partially by the

highly complicated nature of the superposition of contributions with widely differing

fphases from various portions of the cable. More will be said of this in later

discussions of the azimuthal variation of our numerical results on scattered field

amplitudes.

The horizontal components of the computed illuminating fields are not

generally as well-behaved as the vertical components with respect to any resemblance
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to inverse distance behavior. This is possibly due to .. fact that the waves from

different slots along the cable not only add coherently with compli'-3ted relative

phases, but also add vectorially. In all cases, the y-compone~it seems to predomi-

inte



11.4.2 Results for the "Upright Man" Cases

In Tables 11.4, 11.5 and 11.6, Column 1 through 4 and in Figures 11.27 -11.23

some scattering results for a man 1.78 meters tall (about 5'10") and about 0.5

meters wide in upright position proceeding from (or to) a point 17.5 meters inside

the cable to (or from) a point 28 meters outside the cable. These are the cases

I-A, B, C, D delineated in Section 11.3, where A, B, C and 0 refer to scatterer

center azimuthal angles Os 0 O, 900. 1800 and 2700 respectively.

The first point to be made is that all of the field component amplitudes

exhibit a very large decrease (from 40 to 70dB) at 0.= 90 0 and 270 0 relative to

their values at O=0 0 and 1800. Magnitudes at 1800 are generally between 20

and 30dB below those at 00. while those at 2700 and those at 900 are comparable

at some positions and separated by 10 to 20dB at other positions. None of these

variations appear to come directly from attenuation along the cable, which is a

maximum of 2.62dB around the entire circumference of the cable. A was discussed

in Section 11.4.1 in connection with illuminating fields, the Lc;rcumferential

variations in fields illuminating the cable are probably at least partially due

to the wide variations in phase of the contributions from different portions of

the cable. If one adds to that the phase variations in the scattering process

itself, one cannot expect the scattered fields from various azimuthal angles to

follow a smooth variation or to be comparable in magnitude, in spite of superficial

indications of symmetry. If all cable field contributions were added noncoherently,

i.e., if their amplitudes or squared amplitudes were added rather than their

complex fields, the results would undoubtedly show much greater azimuthal symmetry.

Experimental results for the vertical field components (Ref. B.3, Pg. 10; Ref. 8.3,

Pp. 15, 18, 20, 21, 22; Ref. B.6, Pg. 12) show substantial azimuthal fluctuations.
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Turning our attention now to the radial variation in field amplitude at a

fixed azimuthal angle most of the results in Tables 11.4, 11.5 and 11.6 and Figures

11.17 through 11.23 show a substantial decay as the scatterer recedes from

the cable outside the cable but a flat or sometimes slightly increasing response

as it recedes from the cable inside the cable. Also the peak doesn't always occur

at 23.5, the closest radial distance to the cable for which a computation was made,

but sometimes at 25 or at 22 or even further away in a few cases. Since computations

were made at intervals of 1.5 meters, the actual peaks might occur between the

computed points. But in general the occurrence of the peak at a point other than

the point directly above the cable is consistent with the same observation made

experimentally and discussed on Page 16 of Reference B.3. Figure 10 on Page 16

of that reference (radial walk) illustrates the point, wherein peak responses

sometimes occur a meter or more away from the cable radius.

Based on the simple reasoning of Section 11.4.1 we should look for two

contributions to variation of field amplitudes with radial distance in the present

case. First, this simple reasoning would predict a variation as the reciprocal of

the separation distance between the nearest cable slot and the scatterer position

due to the expected variation in the illuminating field. Also there should be an
1

inverse radial distance dependence due to the--Tfactor appearing in the scattered

field component. For example,(Subsection 11.4.1) we should expect from the first

of these mechanisms about 22dB of decrease in amplitude between 23.5 and 17.5 meters

and about 18dB between 23.5 and 28 meters. From the second effect we should expect

a 2.56dB increase as we go from 23.5 to 17.5 and a 1.52dB further decrease as we

proceed from 23.5 to 28 meters. This means that the net decay should be about 19.5dB

from 23.5 to 28 meters and about 20.5dB from 23.5 to 17.5 meters. If we were to base

our interpretation of the results on these mechanisms alone, we would conclude that
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the decay of between about 20 and 25dB that we observe on most of the field corn-

_ponents between scatterer positions at 23.5 and 28 meters is quite reasonable, but

that the flat or even increasing response we see as we proceed from 23.F to 17.5

meters inside the cable cannot be explained by these mechanisms.

There is another feature of the geometry which could help to explain the

great asymm~etry between departures from the cable radius inside and outside the

cable. Outside the cable, as we recede further from the cable radius, the cable

appears convex from the observation point and the distances to the cable slots

other than the nearest one become progressively greater as we move out. As we

move inward inside the cable, however, the cable appears concave and the distances

from the various parts of the cable nearest the observer become more nearly com-

parable, leading to a greater tendency toward constructive interference between

contributions from various slots.

Some of the results shown in Tables 11.4, 11.5 and 11.6 appear anomalous,

and there is no obvious explanation for them based on any of the mechanisms dis-

cussed above. More will be said of this in Subsection 11.5.
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11.4.3 Results for the "Elevated Upright Man" Cases

These results correspond to cases II-A, B, C in Section 11.3. The "man" is

placed on stilts in three different fixed positions ( 0 = 0 Ps = 22, 23.5 and 25,

those-radial positions nearest the cable at which fields were computed). The results

showing field component amplitude vs height of stilts at each position are presented

in Tables 11.7, 11.8 and 11.9. Selected results are also shown in Figures

(Ps = 22), Figure 11.26 (ps = 23.5) and Figures 11.27, 11. 28(ps  25).

In all three cases, the variation with stilt height is from 0 to 2.0 meters.

The field component amplitudes in all three coordinate directions (except for

the vertical field component at ps = 25m, which exhibits anomalous behavior) there

is a decrease of between 2dB and 6dB between the case of zero stilt height and the

case of 2 meter stilt height. This variation is in the proper direction, obviously,

since the expectation is for a reduction in field strength as the scatterer is

further elevated and therefore moves further away from the cable slots generating

the fields. To examine the issue of how close the variation is to the inverse

distance variation, we note that the difference between the "no stilts" case and

2 meter stilts (since the "man" is 1.78 meters tall) is a change in the z-coordinate

of the scatterer center from 0.890 to 1.890. With a pure inverse distance law,

this would result in roughly a 6dB decay between these two cases. This is not

very far from the amount of decrease observed in most of the computed results.
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11.4.4 Height Variation

A set of results showing field component amplitude variation versus intruder

height at Os = C0 and a. ps = 22, 23.5 and 25 meters (Cases III-A, III-B and III-C

respectively in Section 11.3) are shown in Tables 11.10, 11.11 and 11.12. Selected results

also appear in Figs. 11.29, 11.30, Figs. 11.31, 11.32 and Fiqs. 11.33- 11.35 respectively.

In each case the height is varied from 1.60 to 2.08 meters (about 5'3" to nearly

6'10", a more-than-reasonable range of heights for an adult male). In all of these

cases, an increase in field amplitude of about 6dB is observed as the height

increases over the indicated range.

This variation is certainly in the proper direction. The height range

represents an increase of about 30%, if we want to consider the field amplitude

as proportional to the length of the scatterer, this would imply an increase of

about 2.27dB between the response of the short fellow of 5'3" and the basketball

player of 6'10". The 6dB difference we actually observe would be more nearly

,.. consistent with a proportonality to the square of the scatterer length, implying

a 4.56dB increase.

In fact, the scatterer lon9 dimension is about a third of the wavelength at

the frequency used in these computations and tr.- parameter 21Ls is about 2 in free

space. Hence no simple proportionality between the field strength and the scatterer

length can be predicted, such relationships being usually applicable only to

Rayleigh scatterers, very small compared to wavelength. However, for the cases

computed, we do see a positive variation with intruder height Ls corresponding

roughly to somewhere between Ls2 and Ls
3
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11.4.5 Results for the "Crawling Man" Cases

Unfortunately, not all of the crawling man cases (Cases IV-A, B, C, D and

V-A, B, C, D of Section 11.3) were run successfully. Attempts were made to run

these cases immediately before the contract deadline. Some of the cases were

aborted due to computer difficulties and there was no time left to correct these

difficulties.

Most of the intended results were obtained and these are presented in

Tables 11.4, 11.5, and 11.6, Columns 5 through 12. A subset of these results are

shown graphically in Figures 11.36 through 11.39.

Comparisons of the "radially crawling man" (RCM), the "transverse crawling

man" (TCM) and the "upright man" (UM) cases are best made from Tables 11.4, 11.5

and 11.6, where for each field component, the amplitudes for s 0 0 are shown

in Columns 1, 5 and 9 for UM, RCM and TCM respectively. At *s = 900, the cor-

* responding columns are 2 (UM), 6 (RCM) and 10 (TCM). At s = 1800, we have 3 (UM),

7 (RCM) and 11 (TCM) and at s = 2700, 4 (UM), 8 (RCM) and 12 (TCM). We now focus

attention on the variation of the scattered field components at the antenna with

distance of the scatterer from the cable. This was discussed for the UM cases in

Section 11.4.2. Certain RCM and TCM cases have the expected behavior, beginning

with low values at ps= 17.5, peaking at or near 23.5 and decaying to low values at

28. At 0s = O this behavior is exhibited by IExI and IEyI for RCM, but not by

JEzj, which shows a more nearly flat response as distance changes inside the cable,

but a substantial decay as the scatterer recedes from the cable radius outside the

cable. The available results for TCM at Cs = 00 (not all of these are available, as

indicated in Column 9 of Table 11.4) do not seem to indicate that kind of behavior,

in fact they depart from it very substantially. At s = 900, there is a small decay

in all the components of both RCM and TCM between 17.5 and 23.5, opposite to the
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desired trend, but again a substantial decay from 23.5 to 28.0. The rates of decay

outside the cable for both s = 00 and s = 900 are comparable to those observed

with UM, which have already been discussed in Subsection 11.4.2.

The RCM and TCM amplitudes for Os = 1800 and Os = 270 0 are in general more

erratic than their counterparts for s= 0 and *s = 900 Some of these runs were

aborted due to a difficulty in one of the subroutines in the Barber scattering

program. This problem had not been encountered before. Since it occurred very

near the end of the contract period, there was no time to correct the difficulty.

Some very small changes in angle assignments were made to overcome the difficulty

in doing re-runs of these cases. Some of the cases then ran successfully but

produced very strange results which we believed to be unreliable. Consequently,

some of the points are not presented in the tables. In one case (TCM, Os = 2700)

the entire run was aborted and we have no results on this case.

Comparison of the overall order of maqnitude differences between UM, RCM

and TCM cases at a given value of p5 and s can be made from the tables. At

s= 1800 and s = 2700, too few computed points are available for meaningful

comparisons. It is observed that for s = 00 and s = 900 (comparing column 1,

S5 and 9 results) the values of IExI and JEy for RCM cases, through the range of

values of ps covered tend to be roughly comparable (on the average) to the cor-

responding UM cases, but the corresponding JE x values in the TCM case (those

available) are higher by between 10 and 20dB. The IEz I values exhibit somewhat

different trends at os = 00. The TCM values are nearly comparable to the UM values

but the RCM values tend to be higher, by as much as 20dB in some cases. At

90°, the IE I values for TCM are as much as 70 or 80dB. This would imply that

at s = 900, the scattering is negligibly small for the RCM case relative to the

TCM case.
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The difference in orientation between the UM, RCM and TCM cases would not alter

expectations for inverse distance behavior, which are based on the naive thought that

the intruder has the properties of a point scatterer, i.e., subtends a small angle at

both the source and the receiving antenna. That is certainly the case at the antenna,

reasonably well into the scatterer's far zone, but not so at tie nearest illuminating

slot, which sees the scatterer as an extended object subterding a large angle and

lying in its near-zone, particularly at radial positions near 24 meters.

The differences in orientation do produce substantial differences in the

way the scatterer is illuminated and the angular position of the antenna in the

object's scattering pattern. For the UM cases, the illumination and scattering are

both predominantly broadside. For the RCM cases, both illumination and scattering

are primarily "nose-on". For the TCM cases, illumination and scattering are again

largely broadside, but with a much smaller illunimation coverage in the vertical

direction than in the UM cases. All that can be said is that these differences in

geometry should result in some differences in order-of-magnitude, as is observed

in our results. But these observed differences are not always in the same

direction. That might be considered anomalous if we were dealing with a Rayleigh

scatterer illuminated by a single plane wave. In our model, however, we have a

scatterer (free space wavelength - 5.26 meters) whose parameters 27Ls and 2T(2RS)

in free space are respectively about 2.125 and 0.596. With the assumed scatterer

permittivity (es = 46.2E ), neglecting its conductivity, the wavelength in the50'

scatterer medium is reduced to about .774 meters. Hence the parameters 27rLs and

27(2RS) referred to the scatterer medium are now about 14.4 and 4.06 respectively.

These numbers indicate that the scatterer is large enough compared with wavelength

to produce scattered fields that may be highly oscillatory and highly directive.

11-29



Changes in orientation such as those between UM, RCM and TCM ct-es may well produce

very pronounced differences in both the orders of magnitude of the scattered fields

and their sensitivity to scatterer positions.

Another effect which complicates attempts at interpretation of these differences

is that of ground reflection. The assumed ground parameters (c, = 4co, aq = .002,

! = 0.158) are sufficiently large to produce very significant ground reflection

9
terms. Coupled with the highly angle-dependent scattered fields, the ground

reflections of both illuminating and scattered fields should further increase the

sensitivity of the results to small changes in the geometry.
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11.4.6 Relative Magnitudes of Components

The first result that warrants discussion in correction with this topic is

that near the beginning of Subsection 11.4 giving the amplitudes of the x, y and z

components of the electric field at the antenna in the absence of a scatterer. In

summary, this result says that the y-component predominates, the x-component is

between one and two orders of magnitude below the y-component and the z-component

is comparable in magnitude to the x-component. To attempt to explain this, we first

examine Eq. (I-3a) in Appendix I. We also observe that we have assumed that the

TEM mode is the only propagating mode in the cable. For the TEM mode, the electric

field is entirely radial and the magnetic field is entirely azimuthal. That implies

that the (n x ) component in (1-3a) vanishes, the (n x H) component is entirely in

the direction of the cable axis and the (n . E) term is in the direction of v' (ikR)

For any given value of §, the latter is in the direction of

If all slot contributions were in phase and if there were no attenuation along

the cable, then circular symmetry would prevail. Since the antenna is at the center

of the configuration, one would expect a cancellation of the horizontal electric

field contributions from the cable slots and a summation of the vertical contributions,

based on the observations made above. The assumed attenuation of the TEM mode is

about .000728dB per degree of angle along the cable. This implies the following:

(a) if the field strength of the TEM mode were unity at € = 00, it would decay to a

value of about .927 at 900, .860 at 1800, .798 at 2700 and .739 at 3600. These

values would not explain entirely the x-y asymmetry that is observed in the results.

In order that the y-directed field at the antenna will greatly exceed the

x-directed field, the (n x H) contribution, which is the predominant one for the TEM

mode, must be primarily from the portion of the cable near = 00, i.e., the contri-

butions from that region must be more heavily weighted than those from other angular

11-31



regions. Although attenuation could play some role in that predominance, it is

unlikely, as indicated above, to play a major role. The relative phases of the

contributions from the other portions of the cable might cancel out the contributions

from these regions in such a way as to leave the predominant contribution from the

region near q = 00. If that occurs, then that would explain the observed predominance

of the y-field.

In preliminary results presented a few months ago, this same asymmetry was

observed, except that the z-component was even smaller relative to other components

than in the present results and the y-component was larger compared with the x-

component than in the present results. It was suggested at the time that the pre-

sence of an additional mode, subsequently removed, could be partially responsible

for the asymmetry. If that was true, then the removal of that mode did not com-

pletely remove the asymmetry. Moreover, the method of summation of the contri-

butions around the cable slots was changed since those results were obtained and the

asymmetry still persists. Hence, barring an error in the computations, it must be

due to some features of the source model itself.

In the numerical results for the illuminating fields with ground reflections

(Subsection 11.4.1; Tables 11.1, 11.2, 11.3 and Figures 11.9-11.16)the same relative

orders of magnitude between components is usually observed qualitatively i.e., the

x and z components are of comparable magnitudes and the y-component is about one

order of magnitude (about 20dB) above the x or z component. Without ground re-

flections (Figuresll.2,11.4,11.7), the z component tends to be about 10 to 20dB

below the x-component and the y-component is again larger than the x-component, but

usually not as much larger. This indicates that ground reflections seem to enhance

the x-y asymmetry.
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Evidently, the same mechanism is producing these asymmetries in the results

for the illuminating fields near the cable as is producing them at the antenna

location far from the cable. Hence, it cannot be explained by the differences

between the fields at the antenna, which are entirely far zone fields, and those

at the potential scatterer locations, which are near zone fields.

The"Upright Man" cases (Subsection 11.4.2; Tables 11.4, 11.5 and 11.6 and

Figures 11.17 - 11.23 ) and most of the "Crawling Man" cases (Subsection 11.4.5;

Tables 11.13, 11.14 and 11.15 and Figures 11.36 - 11.39 ) do not exhibit the x-y

asymmetry observed in the illuminating fields except in the anomalous case 0s = 2700;

where some of the y-components are lower than their corresponding x-components by

as much as 20dB. Otherwise, x and y components tend to be of comparable magnitude

and z-components tend to be below the x-components by between 10 and 20dB.

It would seem from the geometry that the horizontal field contributions

from the scatterer at ¢s = 00 and 1800 should be predominantly y-directed and that

those from *s = 900 and 2700 should be predominantly x-directed (since the scattered

wave appears as a spherical wave emanating from the scatterer center). Considering

the case of a scatterer at 0s = 00 or 1800, the x-contribution comes from the fact

that the scatterer center and antenna are at different elevations and hence the

wave propagation vector for the scattered wave has a vertical component. This

produces an x-component of the free-space scattered wave field.

Without ground reflections, this x-component might not be as large as the

y-component. There would be only a y-component and a z-component if the antenna

and scatterer center were at the same height and only a small x-component if the

height discrepancy were small. The ground reflections should favor vertical over

horizontal polarization, since the effective ground conductivity is reasonably high

at 57MHz. The antenna and scatterer center heights are large enough to produce a
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significant vertical component of the wave propagation vector for the ground-

reflected scattered wave which is vertically polarized on ground reflection. The

ground reflection of the y-component of the scattered wave is smaller because it is

horizontally polarized. The vertically polarized ground reflected wave contains an

x-component which is added to the x-component already present in the free-space

scattered wave, whereas the ground reflected contribution to the y-component is

smaller because it was horizontally polarized on ground reflection, All of these

effects are in the direction of reducing the predominance of the y-component in the

0 0
wave from a scatterer at s = 0 and 180 . The same arguments can be applied to a

scatterer at *s 900 and 2700 except that x and y are interchanged.
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11.5 Conclusions and Suggestions for Future ResearchI The range of parameter values for which results have been obtained is
extremely limited. It is not possible to draw sweeping conclusions about the

generic class of RF intrusion-sensing systems exemplified by th~e system we have

attempted to analyze on this project (or even about this specific configuration).

* Because of time and cost limitations, it was necessary to confine ourselves to a

very specific configuration with tightly specified parameter values.

The electromagnetic effects we have investigated here are extremely com-

* plicated, involvinq near-zone effects and a scatterer with dimensions comparable to

wavelength. There are a number of parameters to which the results might be quite

sensitive. Among these are: constitutive parameters of the ground, which are

highly sensitive to the chemical and physical composition and moisture content

of soil; the constitutive parameters and dimensions of the "intruder" ( the
spheroidal model of which is an extremely crude approximation to a human body) and

the geometric parameters of the cable, small changes in which might have a signif-

icant effect on the fields illuminating the scatterer.

The decision was made early in the project to construct an analytical model

based on the concept of the plane-wave spectrum of an electromagnetic wave. rhis

was based partially on the fact that the scattering program we planned to use,

and did use, presupposed plane-wave illumination. The decision to use that partic-

ular scattering program, in turn was based on the following reasons. First, the

Barber scattering program appeared to be the best one available for the purpose at

hand, i.e., the best compromise between extremely accurate modellinq of a human

frame, requiring absolutely prohibitive computer time, and an extremely crude but

highly inaccurate model requiring very little computer time. Secondly, the program

;iad been used successfully many times and appeared to have been thoroughly checked
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out. Thirdly, we had insufficient time and resources to devise a different program

which would have allowed an illuminating field other than a plane wave.

Another reason for using the plane-wave spectrum concept was the desire to

include ground reflection effects. For each plane wave in the spectrum, the simple

theory of reflection of a plane wave by an infinite boundary can be used.

For the above reasons, no apology is made for using this form of analytical

modelling. However, the negative aspect of this choice is the necessity for

performing two-dimensional Fourier transformation as the final stage of the

process. At the initial stage of the analysis, there was no way of knowing how

computer-time intensive that process would be. After it was too late to turn back,

it was found that (1) performance of the two dimensional inverse F.T. on the scattered

field spectra with enough points for high accuracy and with no approximations

reducing the number of points needed required a prohibitive amount of computer time,

(2) conventional F.F.T. algorithims available as packaged programs would not be of

much help and there was not time to devise an F.F.T. program that would fit our

needs. For these reasons the stationary phase method was used as a crude approxi-

mation. It probably reduces accuracy somewhat but also reduces the required computer

time very substantially and brings it within reasonable ranqe. However, it is still

too high to allow enough computations for the very extensive parametric study that

we believe is needed to develop a really solid analytical understanding of the

behavior of RF intrusion sensor systems of this class.

A set of preliminary results were presented several months ago, together

with suggestions for ways to improve those results. Nearly all of the suggestions

were carried out in the extension of the contract that followed (and some other
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T-
imprvemntsnot suggested were also made)* except for the suggestion that the

us fstationary phase might not be a sufficiently good approximation and hence

should be replaced by a more rigorous method of performing the inverse Fourier

transformation. An attempt was made to follow that suggestion, but again there

was insufficient time to develop a new and possibly more accurate approximation

and attempts to use the rigorous F.T. method used to get fields in the absence

of the scatterer required prohibitive computer time. Hence we reverted back to the

use of the stationary phase method with only a minor modification just prior to the

contract deadline, in order to allow sufficient time to produce the planned

numerical results. These results were improved relative to the preliminary results,

but we are still not satisfied with their accuracy.

A recommnendation for future research, which we plan to carry, out in continuing

work on this problem, is to devise an approximate method of inverse Fourier trans-

formation which will produce hopefully more accurate results in a much shoiter

* running time per point. Once that is accomplished, we will re-run all of the

results in this report and also study-a great many more parameter variations.

Separation of the various constituents of the field((1) source field in free

space; (2) ground-reflected source field; (3) scattered field in free space; (4)

ground-reflected scattered field) in order to assess the effects of each part of

the process will be one aspect of a future study. Another aspect will be an improve-

ment in the accuracy of the method of summing over the cable slots, which should in

turn improve the accuracy of the ratio of the fields at the antenna with and without

A "field mapping" to determine the spatial variation of illuminating fields; removal

of a second propagation mode in the cable which was used in the earlier computations;
* reassessment of the use of the stationary phase method; correction of an erroneous

value of scatterer radius; removal of all phase ambiguities in the program; improve-
ment of the accuracy of the analytical model of the field from the source.
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the scatterer. This problem was discussed in Section 11.4.6. It was the reason

we did not directly address the issue of target detectability in this report.I That is another task that is planned for the continuing work. As a final step,
we will present those results for which experimental comparisons are possible in

a form amenable to direct graphical comparison with these experimental results.
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Figure 11.1
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Figure 11.2
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Figure 11.4
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Figure 11.5

?EX IdB vs. p
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Figure 11.6
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Figure 11.7
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Figure 11.11
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Figure 11.13
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Figure 11. 14
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Figure 11.15
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Figure 11.16
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Figure 11.20
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Appendix I: KIRCHHOFF-HUYGHENS (OR sTRATTON-CHU) INTEGRAL FORMLAS
FOR FIELDS FROM APERTURES

A-1
The Kirchhoff-Huyghens Formula for the fields from an aperture with area

AS' in an unbounded charge-free, current-free linear, homogeneous, isotropic

medium (neglecting contributions from the aperture edges) is (see Figure 1-1):

ejkR ejkR aV
V(r) If dS'EV(r')a '- (r')] (1-1)

ASst

AS, -00

where

As'.

mgeetr for veterl ormua

0-oiiocoordinates ogteaetr

r - field-point vector * x + y^ + z



r' - source-point vector (on aperture) - + 9y' + iz'
*€ . .. -4.

n' = outward normal unit vector

x. + Y-7 Z Ta

an .*n' = normal derivative operator

R r r'

R IRI

Note that

= r' + 6r' (1-2)

where rO , position vector of aperture center=ix + + zzo

6r' vector from the center r' to a point on the aierture

-)-0
.~~ = ~ o +YY 0 .1 1 + 12 €2 'n1=

where (I' 2 are the unit basis vectors in the rI and 12 directions respe,:-

, tively, and n' is the coordinate in the n' direction (which is set to zero

along the aperture).

Note that Eq. (I-1) applies to either the electric field vector E(r) or

the magnetic field vector H(r).
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Another integral formula similar to (and equivalent to) Eq. (I-1) is

sometimes referred to as the Stratton-Chu integral formula [Stratton, p. 466].

E(r) - dS'[jwu ( 'x H(r')) T(-3a)
TT as, R (-3

ejkR JkR
n +  r ( )]  (I-3a)

H(r) dS'[J cO(^' x E(r')) ejkR

V( e RJkR

H(r - ) - (!H(r' )) V( !LL )]  (l-3b)

Where in Eqs. (I-3a,b) we neglect contributions from aperture edges

[Stratton, p. 469] and assuming volume current and charge densities to be zero.

We can easily derive an alternative form for Eqs. (I-3a,b) in which the

gradients are taken with respect to the field point (unprimed) coordinates

rather than the source point (primed) coordinates. We recognize that

ejkR ejkR (1-4)R R

and

E(r'), H(r'), n' are all independent of the field point

(unprimed) coordinates (1-5)
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Using Eqs. (1-4) and (0-5) in Eq. (I-3a,b), we have

E( r) dS' wU (^ x H(r)) e Jk

- dS'(^n' x~ E(r')) ek (1-6a)

ejkR
+j dS'(fi'E(r))

H(r) T- dS {j ~ ~ x E(r')) ekR (I-6b)

-V x (ff dS'(i' x H(ra)) eJ~R
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Appendix II: PLANE-WAVE SPECTRAL REPRESENTATION OF FIELDS

The representation of electric and magnetic fields as a superposition of

plane waves is amply covered in the literature It is a well-established

technique for dealing with arbitrary electric and magnetic fields in a homo-

geneous medium. In principle, it involves no more than the three-dimensional

spatial Fourier transformation of the field vector or one of its components.

As in Figure 11-1, consider a right-handed rectangular coordinate system

(x,yz) with unit vectors (x, ,z). Assume harmonic time dependence e jut .

The vector r - xx + + zz is the position vector referred to the origin of

coordinates 0. Electric or magnetic field vectors are denoted generically

by V(r) and their three-dimensional spatial Fourier transforms by V(B). The

vector k is the propagation vector associated with a plane wave propagating

in a particular direction. The angle between r and k is denoted by y.

k

I r (x,y,z)

I X

x Figure I-I

Geometry for Plane-Wave Spectral
Representative of Fields

The propagation vector is denoted by

.1-.



c.1 ami ~r I c)f [,he wd urn iie L a rnj u~ I I f r cqu~.
v k.' C L. 0 4, DI I C t 0: 1:) q: Ic, L i c WWJ&S I 0s i t i i- d i u , i: J i n th i CLci - of

-~~p~~'is C : 3'J 0 WLtr/SeCOnd alld 'Whi di ill -jiC'Cdl cO'L hob real (; a ~

Sdi ss I pal i e 2di Ur) or cowplo~x (-il a (Ii ss I itiv? r~~ui*e y l ,~ te e th)

-is Or! di, tc Li a ve(:to,, g iv enby

anIJ whmx l the quariLi ties in Eq. (II-2) are given in term'i of anlls by the

rel atioii;hips

in Cos 
(I21

sin 0 in SO-22)

rh sini n P-S-i)1

(:05 c + if 0 <_ (11-2-4)1

sphoricol p-I'ar' Ei~gle of propajntion direction (11-2-5)'

4 11-2
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.... O

X azimuthal angle of propagation direction (11-2-6)'

and the plus and minus signs correspond to upward and downward propagation,

respectively.

Integration over all direction angles results in the representation

= V(p,z) = fd h e ';h ' { 2 -

jkl~zlZ
+ e V+(Sh)} (1I-3)

where d2h =dB de , p = x + $y, V.$) and V,(.) denote the two-dimensional

spatial Fourier transforms for downward and upward propagation respectively

and where the z-component 8z has been eliminated in the arguments of V and V+

by invoking the relationship (11-2-4)', by virtue of which $z can be expressed

as a function of Bx and 8.

By differentiating Eq. (11-3) with respect to z and setting z equal to

zero, we obtain

V(p,O) d2 e {,() + V(h)} (II-4a)

-i aV I JkBh 'P

[= (p,z)] j k d2 !h e Jz1{V(h) - V.(h0h)} (II-4b)
z=O

(II4a (bmltiplying by eh}

It is easily shown from Eq. (II-4a) (by multiplying by e and inte-

grating on x and y) that
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d2.1O,,(.0 - *;C (p~z)] lh) (1 + J$T d20{18V zoo

I k 2

ff1 J)J d'pflBzji(p,O) + i - l

V (II-5b)

where d p - dx dy.

An alternative representation equivalent to Eq. (Il- ) in terms of theF spherical angles of the wave vector and the spherical coordinates of r (given

by r, e, 0) is:

21 nil2  si jkr co y

V~)~ ir doj{kder cos y

+ de8 sin e8 V(, 8 ekrCSY(16

where

Cos y =Cos e Cos 6+ sin e sin e~ cos(o - OB) (11-7)

and

Vsa : ;(-Ph )]S-si ne acoso a
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A:,.,nc t" I J: PLf.E-WAVE SPECTRAL R 1.'r 1 -M T[ .
O THE FfIFDS FROM AN APERIJlRE

The spherica! wave f,.nctioi R* apaigi :q II,(.

aniI (I.6.a,b) has a i-;.odified plane-;wvc, spcctra1 r,;prculLati [Lro. a .u

4 : iFication of S .r." n, Chpter IX, Els. (23), (24), (23), (26), pp. 577, 57]

e j, 'jkR cos o'
. ... . d ',R d ) s i n 0 ' ,'3 f ") 0u l l . I )

0 .

here it is recalled that P J 1 =1r - r' I where ("',.) are ,,10 s:Lhzica l

coordinate direction angles of f. referenred to a z-coordiniate in t s, di recrLioo

of R, and where*

f( , R) = [] + cos +21~ jkR
i kR cos W,. -k R~r, j' ' R

Noting that e it follows that. V(e jk.!l e3

anJ hence, taking Lhe gradient of (111.1) (differentiating under the integral

sign) we have

( = .- ,,e ) (jk)J d f do sin o

0

jkRcos C,'..e k cO  0(3 f j?(I,.R)FI-vf (B , R ) II2

The relationship appearing in Stratton requires the use of CompleX values of the
components of , the propagation vector, for its impleamentation. The present

form, confining" itself Lo real values of the componernts, contains a dipendrnce

on Hence it is a hmodified plane-wave spe~tral representation where the com-

pound waves have phase -factors jkC,R as do plane waves, but are weighLed with a

factor that is dependent on the space coordinates.

**The derivation of (111.1) is easily accomplished by recognizing that "--- ,
jkco 0, ""or s*

sin , eJkRcos = j sinkR. Differentiation of sinkR then produces the result

cos O0 = r' d' sinO jkRcOs +kR cos 0}. Adding cos kR and j sin kRcosL -th =ne si1,°f~~k o

dividing b&'R a(d noting that the integrand is independent of €' implying that

d = 2,r, we obtain 111.1.

LMo
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Revisingj (111.1) and ([11.2) to iuclud t;e sep, rat iai into uLp,;ard

arid du,'/.nwdrd wav,,. iind Lriansformirj from the sphirical coordiu..,Lc sYstew, wiLh

z-aYs in the R dir;ec tion to o:ir ground f vai, we have

j0kR\ j 1, d' r -R I

-d1 ;..:.i~ e (.ik)fr; , e! (i{f(.1)'

v -R-)ekR .... R -R " ) 2 i, dP.j h - .{f. ±)__, p, 2(Jkrj)21 R }

(1 1.2)'

where f+ .h z

We now simplify the notation by denoting f(jr, R) by f+ , neglect the

R
term in (111.2)' , neoilect the field cotributions due to line currents

around the aperture edge, assume that the ambient medium is free space, a;id

then substitute (111.1)' and (111.2)' intu Eqs. (I.3-a,b), interchanging h2

order of integration. The results of these operations are:

(j k)2 , jk- R
E(r) . . ...- . d? dS' e "  {-Z [11' x H(r')]

AS'

+ x (' x F(r')) - ('.E(r)) c;+-} f(I

:1 I

* This term is not included in the analysis in Sections 3 and 4, but it

-is approximately account.d for in the computations. It is negligibly
small except at positions extremely close to the source.
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, ITr "Ua inpede nce of free-space and LJi, and - su;,c,f.r FL' ,

.. eent u)en t d and d -,x;.:rd proa gALion , r.:sp.c Liv(.

,,0.) - f 1 I ty Il' x F(r)-, . = . . ./ ;. -lh 0 >,,,, ,

- x (ii' x 1H(r )) - ( I' (r)) } f( (I 3:j)

where Y.... wave admittance of free-spac ,,.nd + and - supcrsc'ip Ls0hr YoVIA0  Zo

have th2 same meaning as in Fq. (III.3a).

Ie now express E(r) and H(r) in the Fori, (11.3) as folas:

E(r) E +(r) + [-r) (liT.A,)

H(r) .- 11+- (r) i I-(r) (1l1 .4b)

wh ere

E+(r) : d2 (3, e 0 . (z )

and where, from Eqs. (III.3a,b),

-(j k )2" 0 p, I)r'+( )--- IdS' 0 {-7 [ I' x. .110r-M

,, , - ,,

.... .I1' I 1 ,0



1, A ki,

/I z
A'S'

4I

PAn irportant poitit ari t. this ju :.ure It i r,,:.ss -iry th:, E (h

arfl, '  h)ibe- interrelate!d through the Maywell e:qual-Jons A..h+.~

jj( ) '- yo } + × T EL

i ( h. = Y [ t- F +(',* )il( it

+ 11I .6c.

impl(y) 0 (III.6)

Sin. Eq-;. (III.6a) jd (II.6b)imply Eqs. (Iil.Gc) ,d (Iil.(J),

reseci(: fv.:;ly, and Eq. (111.6a) [wiLh Lhe aid of iI.Gd)] i ,l.ies Eq. (1il.61),

it follois tht if Elr. (Ill.5a,b) are consistent with ei :her Eq. (III.6a) or

(111.6b), then Es. (I11.5a,b) are consistent with the entire system of Eq;.

( I i.6a,b,.,d).

To Lest this consistency, we apply the (-Zo ; - x ...) operation to Eqs.

(fI. 1)-(III.6), resulting, after some minipulation (using the vector identity

f r.-4



R x (1, x C) c) - b) and th.! fact. ihd I '- x (., - - (, t i -  • 0- ,
-. • . >

ii Ch.-., expi2ss ion

-z"xi~) Ii kp) -" x '

AS '

- [&t+x ( ' x E(r')) - E(

+ -+ p--- . [- ( -- x 0('r')) [- fi ))i } f (Ill.7)
-. .~ 0 -> - . )

Expressing E(r') and H(r') in the last square-brac!:eted qtiar-tity in Eq.
,. -.,-) .>

(111.7) in termis of it-, sp,,cil relr,tatin, we have

-Z x 11( ')] .- E.(r')

= d2 t e F- o .>. [--Zo ft x , r . . ... f+( l

';:hen we evaluate the initegral

I = dS' e 0  > (1I1.9)

AS'

w;ith arises in Eq. (111.7), if AS' were an infinitely lorge surface, then

which implie; that

i**- 5L

l -' ..... . -t 
-' ,

.1



1f lq. (Iiii.11) hold,, thon Lhe Rl'- oF L(1. (11 1.8) 111--' tL

vcisi~ing o: 1.iw ink-grafid onI Lio rziis of- r1. (liT.8) is h:1;t.Ji oy the pid"-

i.IXW"] I~vc JI- ~I Li On ( 111 .6.1i) . Thus, the L0~ of l.q. k 1.) Uu~ lovn

wh i h -ii.,Ii i lli t I i WIS o f Eqg. ( 111 .7) 1 s equi Va lt t I" i.., (r' ) as qiv'in by

D: . (li t 1 aT. a is compiutes the demonstration that Ens. (U [.5a~b) ere

01. course, the "Infini tely large surflace' assumption C11 Which Eql. (111.10))

is b';ced iS not really val id here. hlowev(.r , for Eqs. 01.-!,b) (cni whini this

eotir'a analysis is bas-ed) to be Lriily vol id, it is necessa',y that hesurface

be closed. In the prese~nt model, the fields are aIssumfed to be nfegligibly

S;;1ll except Onl the slots; however, the surface still includes the cable area

outs ide the slots and the integral I of Eq. (111.9) still canl be considered

as an integral over a closed surface. Such an integral will i vaish un1less

+l' is (equdl to H;hence Eq. (111.11) holds.

AlIso, as remarked earlier, wo have neglected , in the above analysis, thle

R. e~ kR
Lerin arising in the gradient of p.This term is only significant at

positions extreiiely close to the source. It will be included in the computa-

tions.

.. .. . .. .. ... ........"....



Appendix IV: ELECTROMAGNETIC WAVE PROPAGATION ALONG A COAXIAL CABLE

The theory of electromagnetic wave propagation along a coaxial cable is

well-known; consequently we will invoke standard referencesA'3 in developing the

theory in the context of the specific problem that is the subject of this

report.

First, consider the modes of propagation down a guiding structure with

circular cross-section. Using cylindrical coordinates (r", *", z") and cor-

responding unit base vectors ( 0", , z"), we have in general a set of TE

(transverse electric) and TM (transverse magnetic) modes of propagation. The

fields between r" - a and r" = b, where a and b are inner and outer radii

respectively, can be expressed as a superposition of TE and TM modes. The

field vectors have the forms (where harmonic time dependence e-jwt has been

assumed)

( ) (r e e (IV.l)

LH(r",.€,Z')j n nH

+ C(TM)(r") eJn" e Jk o Z(k }

where in general nH

%A

k " k=zn/k

(zn)TE = (kznR)TE + J(n)TE
TM TM TM

and where

IV-1
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(kznR)TE ko(Vpn T C

TM pnT vpn)TE
YM TM

(ci )nTE
(a) 0 TM

TM

(V pn)TE = phase velocity in meters/sec for TE, mode

(Vpn)TM = phase velocity in meters/sec for TMn mode

(n)TE = attenuation in nepers/meter for TEn mode

(an)TM = attenuation in nepers/meter for TMn mode

TE From Reference A-3, Chapter 3, we can write the general forms of the vectors

Cn (r), as follows:

nH

TE modes [znL)(r") = 0)

,nEr = r + (r) (IV.2a)

TE(r) , r r " + H+rr (IV. 2b)
|,.nH =" n)(r") +1 n 'Ir") j"

where

I



jk)i, TEn Tn N'kTEn
A Jn(k r) Nn(kcn r")

nn TE E)
ri = [EA Jn (kcn r") + B Nn(kcn r")

kcn

Pgkn), Jr" kn ~

H ( j r n) =., B e [Auntin of + B Nn (k cn r
p kcn

( nn) B n(rn,)En " --

+'

3and where

. = cn

~ ~ 'n(kn r") =Bessel function of first kind and order n

iNn (kcn r") =Bessel function of second kind and nth order

Yw =~ wave admittance for TEn mode -
k zn

kzn and kzn are given below Eq. (IM.)

IV-3



kn k - n ko k. cn

k ka*Ii*
kca 0 ko Ecac ; ca = Excac

S cac c a ca complex dielectric constantcac E o ca w of cable material

E _ca
Ca - , where eca = permittivity of cable material

ca= conductivity of cable material

TE
A T amplitude of J (p) term of TEn mode

TEn
B = amplitude of N (p) term of TEn mode

nn

J (k ig) d Jn(p)J'(kcn r") -r

Nn(k r11  p p r

TM Modes [TR() =0

C TMru = " (n) n
,nE r r " (r"l) + " '(r") oi z' E (r~' (IV.3a)

I V-4
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r ,r, e + (,v.3b)

where

TMn  TMn

En)"T(r' )  A jn(kcn r") + Nn (kcn r

j kz--[A nJ(k r") + B n N'(k
E-'rn)(r )  Jkn[nnknr") = ^n cn ]n

kcn

(njn kz TM nTMn

E-,() n A J (k r") + B N (k r")]n cn n cnp kcn

S(r) -Y w f( n9(r"

TMn
n" where ~~al quapitsude of 3. (IV term of r efn e mo e lwEs V.ab

B T = amplitude of N (p) term of TMn mode

nn

TMn

I
i  

Tn . amplitude of N n (p)term of T~ n mode

TMn  W Ca

Yw = wave admittance of TMn mode -

IV-5



The TEM (standard coaxial) mode [e(zn)(r) - t (r") 0 0

At low frequencies we can limit propagation in a coaxial line to the

transverse electromagnetic (TEM) mode, which has the form

^1 v° Jkca " i

E(r", 0', z") = r" E(n)(r") = Vr e (IV.4a)
-~ ~r" 9 n(b/a)r"

H+",** H r') in(b/a)r" (IV.4b)

where kca is defined below Eqs. (IV.2a,b) and where

a = inner radius of cable

b = outer radius of cable

Vo = voltage between r" = a and r" = b

Y = ca = z wave admittance of cable material.Yca V Pp

Equations (IV.4a,b) constitute a complete solution for the TEM fields.

Equations (IV.2a,b) and (IV.3a,b) require the imposition of boundary con-

ditions at r" = a and r" = b for completion. In the actual cable that is

used in the configuration under study on this project, the inner boundary at

r" f a may be well approximated by a perfect conductor. The outer boundary

at r" = b, since it contains the slots, may be approximated as a perfect
conductor except in the slot region. An exact analysis would require con-

sideration of a boundary, that is not cylindrically symmetric, i.e., partially

IV-6
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free space. Such an analysis would not be feasible within the time limita-

tions of the project; hence, the fields are being approximated as if the

cable had perfectly conducting inner and outer boundaries.

The result of these approximations is the condition that the tangential

electric fields must vanish at both r" = a and r" = b; hence,

-~) (n) n) y)
, (a) = E¢,,(b) = (a) z (b) = 0 (IV.5)

for both TE and TM modes.

Applying the conditions (IV.5) to Eqs. (IV.2a,b) and (IV.3a,b), we obtain

the following results:

TE Modes
TEn

J'(k_n a) + D nN'(kcn a) = 0 (IV.6a)

TEn
J(kcn b) + D N(k b) =0 (IV.6b)

where

TE TEn
Dn B

ATn

TM Modes

Jn(kcn a) + D T Nn(kcn a) = 0 (IV.7a)

TM
Jn(kcn b) + D nN(k b) - 0 (IV.7b)
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where

DTMn TM

From Eqs. (IV.6a) and (IV.6b), we obtain the conditions required to

determine kcn for TE and TM modes respectively. Dividing Eq. (IV.6a) by

Eq. (IV.6b) and Eq. (IV.7a) by Eq. (IV.7b), we obtain:

For TE modes

J"'(kcn a) N'(k b) - J'(k b) N'(k a) = 0 (IV.8a)

n nn cn J n cm n (cn

and for TM modes

1 n(kcn a) Nn(kcn b) - n(kcn b) N n(kcn a)= 0 (IV.8b)

In the configuration under investigation, a and b are extremely small

compared with wavelength. Under the very plausible assumption that k is

of at least the same order of magnitude as k or at the very least no greater

than one order of magnitude greater than ko, a study of parameter values

indicates that the argument kcn a and kcn b appearing in Eqs. (IV.8a,b) are

all very small compared with unity. Hence the first few terms of the power

series for the Bessel functions with small arguments can be used to put Eqs.

(IV.8a,b) in a form where they can be easily solved for kcn*

Also, it follows from either Eq. (IV.6a) or (IV.6b) that

IV-8



TE J(n a) J( b) (V a

n (cn n (cn

and from either Eqs. (IV.7a) or (IV.7b) that

DTM~ n Jn(kc a) Jn(k cnb) I.b
Nn cn a nT cn-b

The fields on the slots are those corresponding to r" =b. Since those

are the fields that must be evaluated in our problem, we will focus on them

at this point.

From Eqs. (IV.2a,b), (IV.3a,b) and (IV.9ab), we have, for the fields at

=b:

TE Modes

-.(n)( ATEn
H ilb) % cn Ln(kc b) (IV.10a)

ri = i b (IV.10b)

TE A
-(n) A n j~ n (k b)(Inl

A 2r 5 Ln cnb)(Vlc
n c bkcn

IV-9



where

Ln(p) =Jn(p) N'(0) -Nn(p) J'(p)

TM Modes

.F~) b) =-{n) (b -ff1n.,)(b) =I~(b) -0Sz (IV.lla)

E~n) (b) -A ribjxkz L

n cn k Cfl

TM~ n
H'wb rof (IV.llc)

A-4rhe Bessel function series have been evaluated to fourth order in the

argument p, based on the observation that (k cnb) << I in our problem. The

results are:

n 2 4
J(P) {I -f7 + fa. (V.12d)

2nn
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J,(p) = - + 3( ) (IV.13a)

2 4
ji(p) = i (1 - .2. + (V 3

For n > 3

) n- (n + 2)2 n-2 (n + 4)p4
2 n n'. 2(2n + 2) 2.4(2n' + 2)(2n + 4) } (V1d

(Op) T n + -Y} JoP) + q( p )2 _ 3 ( 2p )41

+ [y + ( )2(J - y) + ( 1 )4(2y- 3))} (IV.14a)

where y 0.5772156

p2 (IV.14b)

N(P) + ){ (IV.14c)

A1

°l IV-ll1;



For n > 3

N1 2 )n,(n  1 ): + (n - 2)!( g )2 + (n ( 

(IV.14d)

N(p) = J (p) + (
0 it p 0 7 lr0t~

Tr T 7 p

+ + ()3( 1Y 5) (IV.15a)

2 (IV.15b)
TTp

N (p) 1 2 (IV.1Sc)

For n > 3

, 12 2n+1

Nn(p) n+1-(- {-n. + (n- 2)!(2- n)( P)2

+ (n.. (4-n ( 3 )4} (Iv.ls)

From Eqs. UIV.12a) through (IV.15d),

L°(P) = O( p ) N° ( p ) " d(p) N° ( p ) = - (IV.16a)

IV-12
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Ll(p) = Jl(p) Nj(p) - Jj() N(p)

L2(p) = J2(p) Nj(p) - J (p) N2(p)

-_ _ { ( 4 (Iv.16c)

For n > 3

r'n(p) Jn (p) Nn(p) - J'(p) Nn(P)

2 {I - 1 . )2 + 1 ( )4} (IV.16d)
" (n - 1) 2(n2'  4)(n- 1)

The forms (IV.12a) through (IV.16d) are those actually used in the com-

puter program. In view of the small values of p applicable to our problem,

these forms are adequate approximations for these functions.

An aspect of this analysis we have not yet discussed is the determination

of the attenuation an for each mode. The usual analytical procedure for the

case of nearly perfectly conducting walls is as follows:A-3  (a) Ignore the

departure from the perfectly conducting wall case in calculating the fields

inside the (possibly lossy) dielectric; (b) Consider the actual conductivity

of the wall material and calculate the "surface impedance" along the walls;

(c) Calculate the "surface current" Js = n x H, where H is the loss-free

magnetic field at the surface and n the normal unit vector; (d) Using the

surface impedance and surface current, calculate the power loss per unit leng +1

IV-13



of line due to ohmic losses along the wall surface; (e) Using the Poynting

theorem, calculate the losses due to the nonzero conductivity of the lossy

dielectrir material, assuming of course that the conductivity is nonzero;

(f) Add the power loss per unit length due to both mechanisms (d) and (e) and

calculate the resulting total attenuation an.

It was originally planned to carry out the procedures (a) through (f)

above for each mode and thereby evaluate the attenuation an by purely

analytical means. It was decided later that the degree of approximation of

those calculations was even greater than that associated with the evaluation

of the fields in the cable as if the walls were perfectly conducting. Also,

in the actual cable, the slots should play a prominent role in the introduction

of another source of energy loss. Obviously these slots will also perturb the

magnitude and direction of the field vectors, but that effect is probably not

as severe as the degree to which they will affect the attenuation. All of

this is speculation of course, but based on such speculation and the computer

time and other limitations on the project, it was decided to use empirically

determine .' values of attenuation. That is what was done in the computer pro-

gram.

Another issue that has not yet been discussed in detail is that of the

determination of kcn for each mode. This can be determined theoretically by

solving the equations (IV.8a,b) for kcn* We invoke the assumptions:

Ikcn al << I (IV.17a)

Ikcn b) < 1 (IV.17b)

thereby justifying the use of the approximations leading to Eqs. (IV.12a)
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through (IV.15d) in constructing the expressions on the left hand side of

Eq. (IV.8a,b). We then construct these expressions and truncate the resulting

series beyond the fourth power in kcn. The results of these operations are

two quadratic equations in k2n sflos

TM Modes

A 0 + B k 2  + C =0(V8an cn nl cn n 0(V1a

TE Modes

D 0c + E k 2  + F 0Q (IV.18b)n cn n cn n

* where

11 2_

___ (2 n )[a' + b' + 4a b' + 3[a4  b

10 = 2  a') (a2  b2) Zn( b

Co = .(b

D=a 2 b2[(a 2  b2 + (a2 +b2) Zn

E0 = -(2(a' -b 4) +a 2 b2  ba(-

F0  16(a2- b2)

IV1



1 4 4 2 2A, g7(a+ b + a b)

1 (a2 + b2 )

Cl  1

D (a 4 + b4 + a2 b2)

El (a2 + b2 )

F =1

A2 - (a2 + b2)[a 4 + 0 + Sa 2 b2 ]

B2 - (a4 + b4 + 4a2 b
2)

C2  ITb
C2  

2 + b2

2 T (..2 + b2)(a4 + b)
:i 

E~2 T M " 
2

E l (a44 + a b2

2

F2 =a+ b2
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For n > 3

n  32n(n2 4)(n 2 - 1)(ab)n

2n  a2n ) n2(2 - b2)2 4 4)(b2n + a2n )

--{(b2 - ) (a +b +3n(a -)b +

+ 2(a4 + b4 + 4a2 b2)(b2n - a2n)}

Bna 4n(n2  I l)(ab)n {(a2n + b 2n) n(a2 - b2) + (b2n - a2n)(a 2 + b2),

Cn - 1b)n [b2n _ a2nj
n n(ab)nn

32n(n2 - 4)(n2 - l)(ab)n

j ---{(b2n - a2n)[-n 4(a2 .b 2 )2 + lOn 2(a4 +b 4  a2 b2)

+ 8a2 b2] + (b2n + a2 n)[n3 (a 4 
- b4) + 8n(a 4 - b4 )])

.= -nB + (b2n - a2n)(a
2 + b2)

n n4(ab)n

F n*- n2 C

Equations (IV.18a,b) can be solved for kcn. The solutions are:
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k

_8,+ 82 4A° C
(kcn)TM mode n n  (IV.19a)

cn) n od

(k)-En+ 4D Fn

(kcn)Th mode = + 4Dn Fn (IV.19b)

A small program was written to implement the calculations embodied in Eqs.

(IV.18a,b) and (IV.19a,b). From the k values and the equation

kzn J" k n2 (IV.20)

we can determine the values of kzn' the complex propagation constant for a

particular mode.

Since the real part of kzn is W/Vp, where Vp is the phase velocity, and

the imaginary part is a portion of the attenuation an (it does not include

attenuation due to wall losses), it would seem that the calculations repre-

sented by Eqs. (IV.18a,b), (IV.19a) and (IV.20) would be sufficient to deter-

mine the propagation and attenuation (exclusive of wall losses, discussed

elsewhere) properties of a TEn or TMn mode.

In the numerical computations presented in this report, we have not used

the above formalism to obtain the propagation constants k zn Instead, we

have used empirically determined values of the phase velocity and the attenua-

tion, which circumvents the need for these computations.

However, the computation of both phase velocity and attenuation for each

mode directly from the theory is quite feasible and simple to carry out. If

there were justification for carrying out these computations in a practical
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problem (i.e., if it were known that a number of higher order modes were

propagating and if their relative amplitudes could be determined), it would

be very easy to add this capability to our general computer program. At the

relatively low frequencies of interest in this particular problem, most of the

higher order modes would be highly evanescent and would contribute energy only

from those slots near the power source; hence, they would not be very important

contributors to the fields incident on the scatterer or the fields at the

antenna.
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